| sion Hazard and Sediment Basins | 2. Flow Calculations | 3. Sediment Basin Spillway Design | |--|--|---| | Site Name: MPW | Peak flow is given by the Rational Formula: Qy = $0.00278 \times C_{10} \times F_Y \times I_{y, tc} \times A$ | Structure Details | | Site Location: MOOREBANK | where: Q _v is peak flow rate (m³/sec) of average recurrence interval (ARI) of "Y" years | Structure Name 1 2 3 4 5 6 Auto-filled from Worksheet 1 | | Precinct/Stage: PRECINCT INFRASTRUCTURE WORKS | C ₁₀ is the runoff coefficient (dimensionless) for ARI of 10 years. | Catchment Area (ha) 16.95 18.26 25.92 11.1 8.56 4.32 Auto-filled from Worksheet 1 Time of concentration (tc) 12 12 14 10 9 7 Auto-calculated assuming to is halve | | Other Details: STAGE 1 EROSION & SEDIMENT CONTROLS | F_y is a frequency factor for "Y" years.A is the catchment area in hectares (ha) | Rainfall Intensities (IFD Values) | | | l _{y, tc} is the average rainfall intensity (mm/hr) for an ARI of "Y" years and a design duration of "tc" (minutes or hours) | 1 year, tc 52.51 52.51 48.99 56.81 59.34 65.54
2 year, tc 68.08 68.08 63.5 73.67 76.97 85.03 Enter the relevant rainfall intensities (| | Site area Sub-catchment or Name of Structure 1 2 3 4 5 6 Notes | | 5 year, tc 89.03 89.03 83.02 96.36 100.69 111.27 mm/hr) for each of the nominated rain events. | | ment area (ha) 16.95 18.26 25.92 11.1 8.56 4.32 | Time of concentration $(t_c) = 0.76 \times (A/100)^{0.38}$ hrs | 20 year, tc 117.91 117.91 109.9 127.7 133.49 147.59 The time of concentration (tc) determine the duration of the event to be used | | atchment area (ha) 16.95 18.26 25.92 11.1 8.56 4.32 | Note: For urban catchments the time of concentration should be determined by more precise calculations or reduced by a factor of 50 per cent. Place an x in the appropriate row below to | 50 year, tc 139.5 139.5 130.01 151.11 157.98 174.66
100 year, tc 156.1 156.1 145.45 169.12 176.82 195.54 | | alysis (enter sediment type if known, or laboratory particle size data) | automatically halve the time of concentration for that sub-catchment. | | | Type (C, F or D) if known: D D D From Appendix C (if known) | Structure Details Notes | | | % sand (fraction 0.02 to 2.00 mm) % silt (fraction 0.002 to 0.02 mm) Enter the percentage of each soil | Name 1 2 3 4 5 6 | Design ARI event (select): 100 100 100 100 100 100 Select design ARI (years) from dropdo | | clay (fraction finer than 0.002 mm) | Catchment Area (ha) 16.95 18.26 25.92 11.1 8.56 4.32 Place an x here to halve tc X X X X X X Place an x if disturbed catchment | Frequency Factor 1.2 1.2 1.2 1.2 1.2 1.2 Auto-filled based on selected ARI | | Dispersion percentage E.g. enter 10 for dispersion of 10% | Time of concentration (tc) 12 12 14 10 9 7 Place an X in disturbed catchment | Flow Calculation 7.944 8.558 11.319 5.636 4.544 2.536 Auto-calculated based on selected Africance | | % of whole soil dispersible See Section 6.3.3(e). Auto-calculated e Group D D D D Automatic calculation from above | | | | b b b b b b hatemate calculation normations | Rainfall Intensities 1-year, tc 52.51 52.51 48.99 56.81 59.34 65.54 Enter the relevant rainfall intensities | | | data | 2-year, tc 68.08 68.08 63.5 73.67 76.97 85.03 (in mm/hr) for each of the | | | fall depth (no of days) 5 5 5 5 5 5 See Section 6.3.4 and, particularly, fall depth (percentile) 85 85 85 85 85 7 85 | 5-year to 89.03 89.03 83.02 96.36 100.69 111.27 nominated rainfall events. | | | rail depth (percentile) 85 85 85 85 85 85 Table 6.3 on pages 6-24 and 6-25. | 10-year, tc 101.56 101.56 94.68 109.97 114.94 127.06 The time of concentration (tc) determines the duration of the | | | actor (if known) | 20-year, tc 117.91 117.91 109.9 127.7 133.49 147.59 event to be used | | | c, 6-hour storm (if known) 10.9 10.9 10.9 10.9 10.9 Only need to enter one or the other here | 50-year, tc 139.5 139.5 130.01 151.11 157.98 174.66 100-year, tc 156.1 156.1 145.45 169.12 176.82 195.54 | | | Factors | | | | sivity (<i>R</i> -factor) 2580 2580 2580 2580 2580 Auto-filled from above | C10 runoff coefficient 0.9 0.9 0.9 0.9 0.9 Use AR&R or Table F3, pg F-6 | | | lity (K-factor) 0.075 0.075 0.075 0.075 0.075 | Frequency Factors | | | th (m) 300 300 300 300 300 300 300 300 ient (%) 1 1 1 1 1 RUSLE LS factor calculated for a high | FF, 1-year 0.8 0.8 0.8 0.8 0.8 Can use 0.8 for a construction site | | | dient (LS -factor) 0.27 0.27 0.27 0.27 0.27 rill/interrill ratio. | FF, 2-year 0.85 0.85 0.85 0.85 0.85 Can use 0.85 for a construction site | | | ntrol practice (<i>P</i> -factor) 1.3 1.3 1.3 1.3 1.3 | FF, 5-year 0.95 0.95 0.95 0.95 0.95 Can use 0.95 for a construction site | | | ver (C -factor) 1 1 1 1 1 1 | FF, 10-year 1 1 1 1 1 1 Generally always 1 FF, 20-year 1.05 | | | | FF, 20-year 1.05 1.05 1.05 1.05 1.05 Can use 1.05 for a construction site FF, 50-year 1.15 | | | nt Basin Design Criteria (for Type D/F basins only. Leave blank for Type C basins) il) zone design (no of months) 2 2 2 2 2 Minimum is generally 2 months | FF, 100-year 1.2 1.2 1.2 1.2 1.2 1.2 Can use 1.2 for a construction site | | | othic runoff coefficient) 0.64 | | | | | Flow Calculations Notes 1-year, tc (m³/s) 1.782 1.919 2.542 1.262 1.017 0.567 | | | ions and Type D/F Sediment Basin Volumes | 2-year, tc (m³/s) 2.454 2.644 3.5 1.739 1.401 0.781 | | | na/yr) 68 68 68 68 68 68 68 and an | 5-year, tc (m³/s) 3.587 3.864 5.115 2.542 2.049 1.143 | | | ³ /ha/yr) 53 53 53 53 53 Conversion to cubic metres | 10-year, tc (m³/s) 4.307 4.64 6.14 3.054 2.462 1.373 | | | pasin storage (soil) volume (m ³) 149 160 227 97 75 38 See Sections 6.3.4(i) for calculations | 20-year, tc (m³/s) 5.25 5.656 7.484 3.724 3.002 1.675 | | | pasin settling (water) volume (m ³) 3493 3763 5342 2287 1764 890 See Sections 6.3.4(i) for calculations pasin total volume (m ³) 3642 3923 5569 2384 1839 928 | 50-year, tc (m³/s) 6.803 7.329 9.696 4.826 3.891 2.171 | | | the control in co | 100-year, tc (m³/s) 7.944 8.558 11.319 5.636 4.544 2.536 | | | NB for sizing of Type C (coarse) sediment basins, see Worksheet 3 (if required). | NB for flow calculations on sediment basin spillways, see Worksheet 3 (if required). | | | | | | | | | | | · | | | | | | | | | | | | | | | STAGE 2 BASIN CALCULATIONS - REFER DRAWING LPWPIW-COS-CV-DWG-0211 STAGE 3 BASIN CALCULATIONS - REFER DRAWING LPWPIW-COS-CV-DWG-0212 ISSUED FOR CONSTRUCTION 20.08.20 DATE ISSUE AMENDMENTS STAGE 4 BASIN CALCULATIONS - REFER DRAWING LPWPIW-COS-CV-DWG-0213 FOR CONSTRUCTION PROJECT MANAGER PRECINCT INFRASTRUCTURE WORKS WEST MOOREBANK AVENUE, MOOREBANK DESIGNED DRAWN DATE CHECKED SIZE SCALE CAD REF: D.S. D.S. AUG 19 M.W. A0 AS SHOWN LPWPIW-COS-CV-DWG-020 Costin Roe Consulting Pty Ltd. Consulting Engineers ACN 003 696 446 Level 1, 8 Windmill Street Walsh Bay, Sydney NSW 2000 Tel: (02) 9251-7699 Fax: (02) 9241-3731 Costin Roe Consulting PRECISION | COMMUNICATION | ACCOUNTABILITY EROSION AND SEDIMIENT CONTROL SEDIMENTATION BASIN RUSLE CALCULATIONS LPWPIW-COS-CV-DWG-0201