MOVEMENT SUMMARY
Site: I-06 2030 MIMT \& SIMTA PM

Network: 2030 MIMT \&
SIMTA PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles													
Mov ID ODMo V	Demand Flows		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
	Total	HV				Vehicles		Distance					
	veh/h	\%	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)													
1 L2	1010	2.9	894	3.0	0.510	22.5	LOS B	13.3	95.4	0.57	0.75	39.9	
3 R2	976	11.8	868	12.3	1.145	188.7	LOS F	16.6	130.6	1.00	1.42	15.9	
Approach	1986	7.3	1762 N1	7.6	1.145	104.4	LOS F	16.6	130.6	0.78	1.08	20.7	
East: Newbridge Road (E)													
4 L2	1280	7.8	1280	7.8	1.124	204.6	LOS F	82.4	625.2	1.00	1.34	14.2	
5 T1	1373	4.8	1373	4.8	0.923	51.1	LOS D	42.7	311.4	1.00	1.04	43.3	
Approach	2653	6.3	2653	6.3	1.124	125.1	LOS F	82.4	625.2	1.00	1.18	24.6	
West: Newbridge Road (W)													
11 T1	1129	4.0	1129	4.0	0.442	9.3	LOS A	14.6	105.8	0.50	0.45	62.9	
12 R2	1120	2.8	1120	2.8	1.202	235.3	LOS F	75.3	539.6	1.00	1.47	8.1	
Approach	2249	3.4	2249	3.4	1.202	121.9	LOS F	75.3	539.6	0.75	0.96	22.3	
All Vehicles	6888	5.6	6665 N1	5.8	1.202	118.5	LOS F	82.4	625.2	0.86	1.08	22.9	

PHASING SUMMARY

Site: I-06 2030 MIMT \& SIMTA PM
\$ ${ }^{\phi}$ Network: 2030 MIMT \&
SIMTA PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	44	76
Green Time (sec)	38	26	34
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	44	32	40
Phase Split	38%	28%	34%

I-07 Intersection of Moorebank Avenue and Heathcote Road

MOVEMENT SUMMARY

Site: I-07 2030 MIMT \& SIMTA AM
\$ Network: 2030 MIMT \& SIMTA AM
Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov ID ODMo v	Demand Total	$\begin{gathered} \text { Flows } \\ \text { HV } \end{gathered}$	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95\% Bac Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)												
2 T1	1958	7.5	1760	7.6	1.159	190.5	LOS F	58.2	440.6	1.00	1.83	5.0
3 R2	23	18.2	21	18.4	0.188	71.8	LOS F	1.3	10.9	0.98	0.71	30.6
Approach	1981	7.6	1781 N1	7.7	1.159	189.1	LOS F	58.2	440.6	1.00	1.82	5.2
East: Heathcote Road (E)												
4 L2	29	57.1	29	57.1	1.444	484.6	LOS F	103.0	775.7	1.00	1.95	6.8
6 R2	952	5.9	952	5.9	1.444	484.5	LOS F	103.0	775.7	1.00	1.96	6.7
Approach	981	7.4	981	7.4	1.444	484.5	LOS F	103.0	775.7	1.00	1.96	6.7
North: Moorebank Avenue (N)												
7 L2	795	7.9	612	9.0	0.379	10.7	LOS A	12.2	91.7	0.54	0.71	51.4
8 T1	833	19.3	653	21.6	0.384	21.5	LOS B	12.9	108.7	0.66	0.58	13.1
Approach	1628	13.7	$1266{ }^{\text {N1 }}$	15.5	0.384	16.3	LOS B	12.9	108.7	0.60	0.64	40.9
All Vehicles	4591	9.7	$4028{ }^{\text {N1 }}$	11.1	1.444	206.7	LOS F	103.0	775.7	0.87	1.48	8.5

PHASING SUMMARY
Site: I-07 2030 MIMT \& SIMTA AM
蜔 Network: 2030 MIMT \& SIMTA AM
Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)

Phase Timing Results

Phase	B	A	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	15	88
Green Time (sec)	9	67	39
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	15	73	45
Phase Split	11%	55%	34%

MOVEMENT SUMMARY
Site: I-07 2030 MIMT \& SIMTA PM

Network: 2030 MIMT \& SIMTA PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo V	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
2 T1	1204	9.6				1204	9.6	0.957	65.1	LOS E	53.3	408.1	0.98	1.23	12.6
$3 \quad \mathrm{R} 2$	48	8.7	48	8.7	0.401	64.7	LOS E	2.8	20.9	1.00	0.74	32.2			
Approach	1252	9.5	1252	9.5	0.957	65.1	LOS E	53.3	408.1	0.98	1.21	13.9			
East: Heathcote Road (E)															
4 L2	76	19.4	76	19.4	1.426	440.1	LOS F	93.9	698.6	1.00	2.00	7.3			
6 R2	812	5.2	812	5.2	1.426	439.3	LOS F	93.9	698.6	1.00	2.01	7.4			
Approach	887	6.4	887	6.4	1.426	439.4	LOS F	93.9	698.6	1.00	2.01	7.4			
North: Moorebank Avenue (N)															
7 L2	884	3.7	762	3.7	0.359	7.5	LOS A	5.0	36.5	0.24	0.61	53.8			
8 T1	1491	6.5	1286	6.6	0.670	6.3	LOS A	11.8	88.1	0.35	0.32	29.3			
Approach	2375	5.5	$2048{ }^{\text {N1 }}$	5.5	0.670	6.7	LOS A	11.8	88.1	0.31	0.43	48.4			
All Vehicles	4514	6.8	4188 N1	7.3	1.426	115.8	LOS F	93.9	698.6	0.66	1.00	13.3			

PHASING SUMMARY

Site: I-07 2030 MIMT \& SIMTA PM

蛆 Network: 2030 MIMT \& SIMTA PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	B	A	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	14	80
Green Time (sec)	8	60	30
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	14	66	36
Phase Split	12%	57%	31%

Phase B

I-08 Intersection of Moorebank Avenue and Industry Park Access

MOVEMENT SUMMARY

Site: I-08 2030 MIMT \& SIMTA AM
\$ゆ Network: 2030 MIMT \& SIMTA AM
Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	$\begin{aligned} & \text { Demand Flows } \\ & \text { Total HV } \end{aligned}$	Arrival Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95\% Bac Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h \%	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
1 L2	$91 \quad 3.5$	91	3.5	0.056	6.1	LOS A	0.4	2.6	0.12	0.58	43.1
2 T1	19396.9	1939	6.9	1.268	303.8	LOS F	172.8	1301.0	1.00	2.26	5.4
Approach	20306.8	2030	6.8	1.268	290.5	LOS F	172.8	1301.0	0.96	2.19	5.7
North: Moorebank Avenue (N)											
8 T1	74518.9	583	20.9	0.208	2.5	LOS A	3.8	32.4	0.22	0.20	56.9
9 R2	$65 \quad 38.7$	52	41.6	0.992	106.2	LOS F	4.3	41.1	1.00	1.02	12.5
Approach	81020.5	635 N1	22.6	0.992	11.0	LOS A	4.3	41.1	0.29	0.26	47.3
West: Industry Park Access (W)											
10 L2	3462.5	34	62.5	0.415	64.9	LOS E	2.3	24.3	0.95	0.73	9.6
12 R2	5872.9	58	72.9	0.415	68.1	LOS E	2.7	31.5	0.98	0.73	19.8
Approach	9269.1	92	69.1	0.415	66.9	LOS E	2.7	31.5	0.97	0.73	16.8
All Vehicles	293212.5	2757 N1	13.3	1.268	218.7	LOS F	172.8	1301.0	0.81	1.69	8.0

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA AM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)

Phase Timing Results		
Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	116
Green Time (sec)	110	11
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	116	17
Phase Split	87%	13%

Phase A

MOVEMENT SUMMARY

Site: I-08 2030 MIMT \& SIMTA PM

Network: 2030 MIMT \&
SIMTA PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=65$ seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo V	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
1 L2	11	30.3				11	30.3	0.010	6.8	LOS A	0.0	0.4	0.22	0.57	42.7
2 T1	1173	8.9	1173	8.9	0.500	5.1	LOS A	9.5	72.0	0.51	0.45	51.3			
Approach	1184	9.1	1184	9.1	0.500	5.1	LOS A	9.5	72.0	0.50	0.46	51.1			
North: Moorebank Avenue (N)															
8 T1	1564	6.1	1342	6.1	0.521	5.2	LOS A	10.2	76.4	0.52	0.47	53.9			
9 R2	25	62.5	22	62.3	0.131	15.0	LOS B	0.4	4.0	0.52	0.67	32.5			
Approach	1589	7.0	$1364{ }^{\text {N1 }}$	7.0	0.521	5.3	LOS A	10.2	76.4	0.52	0.47	53.6			
West: Industry Park Access (W)															
10 L2	34	15.6	34	15.6	0.081	4.3	LOS A	0.3	2.4	0.38	0.44	26.2			
12 R2	190	10.1	190	10.1	0.447	32.4	LOS C	3.0	22.9	0.97	0.76	28.1			
Approach	223	11.0	223	11.0	0.447	28.2	LOS B	3.0	22.9	0.88	0.71	28.0			
All Vehicles	2997	8.1	2771 N1	8.8	0.521	7.1	LOS A	10.2	76.4	0.54	0.48	49.1			

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA PM
\$ ${ }^{\phi}$ Network: 2030 MIMT \&

SIMTA PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=65$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	51
Green Time (sec)	45	8
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	51	14
Phase Split	78%	22%

I-09 Intersection of Moorebank Avenue and Church Road

MOVEMENT SUMMARY

Site: I-09 2030 MIMT \& SIMTA AM

Moorebank Avenue / Church Road
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
$2 \quad$ T1	2141	8.2	0.797	8.3	LOS A	12.4	94.2	0.15	0.11	52.2	
$3 \quad \mathrm{R} 2$	285	8.8	0.797	31.7	LOS C	12.4	94.2	1.00	0.74	37.6	
Approach	2427	8.3	0.996	11.0	NA	12.4	94.2	0.25	0.18	49.9	
East: Church Road (E)											
4 L2	205	16.1	0.270	7.7	LOS A	1.1	8.9	0.52	0.74	47.1	
6 R2	7	0.0	0.945	803.3	LOS F	2.3	16.4	1.00	1.07	4.1	
Approach	212	15.6	0.945	35.4	LOS C	2.3	16.4	0.53	0.76	34.7	
North: Moorebank Avenue (N)											
$7 \quad$ L2	37	0.0	0.242	5.6	LOS A	0.0	0.0	0.00	0.05	57.7	
8 T1	775	24.2	0.242	0.0	LOS A	0.0	0.0	0.00	0.03	59.6	
Approach	812	23.1	0.242	0.3	NA	0.0	0.0	0.00	0.03	59.5	
All Vehicles	3450	12.2	0.996	10.0	NA	12.4	94.2	0.21	0.18	50.4	

MOVEMENT SUMMARY

Site: I-09 2030 MIMT \& SIMTA PM
Moorebank Avenue / Church Road
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	1210	12.5	0.676	0.2	LOS A	0.0	0.0	0.00	0.00	59.6	
3 R2	112	14.2	0.711	54.5	LOS D	3.4	27.4	0.96	1.18	29.7	
Approach	1322	12.6	0.711	4.8	NA	3.4	27.4	0.08	0.10	54.8	
East: Church Road (E)											
4 L2	428	5.2	1.395	413.3	LOS F	91.9	676.1	1.00	5.42	7.5	
6 R2	1	0.0	0.195	657.7	LOS F	0.5	3.3	1.00	1.00	5.0	
Approach	429	5.2	1.395	413.9	LOS F	91.9	676.1	1.00	5.41	7.5	
North: Moorebank Avenue (N)											
7 L2	14	7.7	0.940	7.6	LOS A	0.0	0.0	0.00	0.01	54.1	
8 T1	1728	6.8	0.940	2.4	LOS A	0.0	0.0	0.00	0.00	55.5	
Approach	1741	6.8	0.940	2.4	NA	0.0	0.0	0.00	0.00	55.5	
All Vehicles	3492	8.8	1.395	53.8	NA	91.9	676.1	0.15	0.70	30.6	

I-10 Intersection of Heathcote Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=131$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	263	1.2	0.182	8.3	LOS A	3.5	25.0	0.27	0.63	48.2	
5 T1	2073	5.3	1.258	288.3	LOS F	162.6	1189.8	1.00	2.15	10.3	
6 R2	647	3.3	1.268	267.3	LOS F	42.9	308.4	1.00	1.54	11.2	
Approach	2983	4.5	1.268	259.1	LOS F	162.6	1189.8	0.94	1.89	11.0	
NorthEast: Nuwarra Road (NE)											
7 L2	416	4.8	0.484	24.5	LOS B	16.5	120.1	0.71	0.78	42.4	
8 T1	264	8.0	0.423	53.3	LOS D	7.7	57.2	0.94	0.76	26.2	
9 R2	508	5.8	1.436	477.0	LOS F	49.8	365.8	1.00	1.93	6.6	
Approach	1188	5.9	1.436	224.6	LOS F	49.8	365.8	0.89	1.27	11.9	
NorthWest: Heathcote Road (NW)											
10 L2	254	11.6	0.334	21.5	LOS B	7.8	60.1	0.70	0.76	42.7	
11 T1	1044	11.3	0.957	54.9	LOS D	42.9	329.5	0.90	0.97	31.2	
12 R 2	235	6.3	0.786	75.4	LOS F	8.0	59.1	1.00	0.89	19.9	
Approach	1532	10.6	0.957	52.5	LOS D	42.9	329.5	0.88	0.92	30.8	
SouthWest: Wattle Grove Drive (SW)											
1 L2	639	2.1	0.849	51.8	LOS D	31.9	227.1	0.99	1.15	24.8	
2 T1	543	4.5	0.817	61.8	LOS E	19.6	142.7	1.00	0.94	23.7	
3 R 2	263	4.0	1.277	332.6	LOS F	42.3	306.5	1.00	1.80	6.6	
Approach	1445	3.4	1.277	106.7	LOS F	42.3	306.5	0.99	1.19	16.1	
All Vehicles	7148	5.8	1.436	178.3	LOS F	162.6	1189.8	0.93	1.44	13.9	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 131 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	D	E	G
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	54	67	86	114
Green Time (sec)	48	7	13	22	11
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	54	13	19	28	17
Phase Split	41%	10%	15%	21%	13%

PhaseA

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA PM

Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=139$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	337	2.5	0.282	15.4	LOS B	8.9	63.6	0.45	0.70	42.4	
5 T1	1331	5.4	0.992	77.8	LOS F	59.5	436.2	0.93	1.13	26.0	
6 R2	469	3.1	1.197	269.1	LOS F	34.2	246.1	1.00	1.49	11.2	
Approach	2137	4.5	1.197	110.0	LOS F	59.5	436.2	0.87	1.14	20.5	
NorthEast: Nuwarra Road (NE)											
7 L2	646	2.8	0.950	79.5	LOS F	47.1	337.5	1.00	1.22	26.0	
8 T1	621	1.4	0.996	96.4	LOS F	29.6	209.3	1.00	1.17	18.0	
9 R2	556	7.0	1.120	181.1	LOS F	35.9	266.2	1.00	1.30	14.7	
Approach	1823	3.6	1.120	116.3	LOS F	47.1	337.5	1.00	1.23	18.9	
NorthWest: Heathcote Road (NW)											
10 L2	258	6.1	0.232	21.3	LOS B	8.5	62.5	0.53	0.73	43.0	
11 T1	1701	2.7	1.170	222.2	LOS F	119.3	855.0	1.00	1.79	12.7	
12 R 2	467	2.0	1.103	167.2	LOS F	28.6	203.5	1.00	1.24	11.1	
Approach	2427	3.0	1.170	190.3	LOS F	119.3	855.0	0.95	1.57	13.5	
SouthWest: Wattle Grove Drive (SW)											
1 L2	305	1.7	0.387	33.9	LOS C	14.1	100.1	0.76	0.85	30.6	
2 T1	343	1.2	0.486	57.7	LOS E	10.6	75.1	0.96	0.79	24.7	
3 R2	370	1.1	1.372	425.7	LOS F	69.2	489.1	1.00	1.93	5.3	
Approach	1018	1.3	1.372	184.3	LOS F	69.2	489.1	0.91	1.22	10.7	
All Vehicles	7405	3.3	1.372	148.1	LOS F	119.3	855.0	0.93	1.31	15.9	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA PM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 139 seconds (User-Given Phase Times)
Phase Timing Results

I-11 Intersection of Newbridge Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-11 2030 MIMT \& SIMTA AM
Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Nuwarra Road (S)											
1 L2	37	8.6	0.885	63.8	LOS E	26.8	190.9	0.91	0.97	33.4	
2 T1	352	1.5	0.885	60.8	LOS E	26.8	190.9	0.91	0.97	28.1	
3 R2	852	6.2	1.232	301.9	LOS F	72.5	534.1	1.00	1.53	11.1	
Approach	1240	4.9	1.232	226.5	LOS F	72.5	534.1	0.97	1.36	13.8	
East: Newbridge Road (E)											
4 L2	353	16.7	0.649	28.2	LOS B	22.7	180.3	0.74	0.79	44.8	
5 T1	1300	12.1	0.649	23.8	LOS B	23.3	181.4	0.69	0.64	50.9	
Approach	1653	13.1	0.649	24.7	LOS B	23.3	181.4	0.70	0.67	49.6	
North: Nuwarra Road (N)											
7 L2	8	0.0	0.995	114.7	LOS F	11.8	83.1	1.00	1.25	21.7	
8 T1	156	0.7	1.244	158.6	LOS F	28.1	203.6	1.00	1.38	17.1	
$9 \quad \mathrm{R} 2$	142	5.2	1.244	308.8	LOS F	28.1	203.6	1.00	1.80	11.6	
Approach	306	2.7	1.244	226.9	LOS F	28.1	203.6	1.00	1.57	13.9	
West: Newbridge Road (W)											
10 L2	305	2.1	1.166	220.5	LOS F	121.1	907.0	1.00	1.65	15.2	
11 T1	2315	10.2	1.241	247.6	LOS F	145.7	1121.8	1.00	1.91	14.6	
Approach	2620	9.2	1.241	244.4	LOS F	145.7	1121.8	1.00	1.88	14.6	
All Vehicles	5820	9.1	1.244	177.3	LOS F	145.7	1121.8	0.91	1.41	18.0	

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA AM
Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	72	89
Green Time (sec)	66	11	45
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	72	17	51
Phase Split	51%	12%	36%

MOVEMENT SUMMARY

目 Site: I-11 2030 MIMT \& SIMTA PM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo	Deman	Fows	Deg. Satn	Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed
v	Total	HV				Vehicles	Distance			
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Nuwarra Road (S)										
1 L2	58	7.3	0.783	71.7	LOS F	15.1	108.2	1.00	0.90	31.7
2 T1	159	0.7	0.783	67.3	LOS E	15.1	108.2	1.00	0.90	28.8
3 R 2	574	6.2	1.027	132.8	LOS F	29.1	214.6	1.00	1.15	20.6
Approach	791	5.2	1.027	115.2	LOS F	29.1	214.6	1.00	1.08	22.5
East: Newbridge Road (E)										
4 L2	766	3.8	0.792	18.4	LOS B	33.7	245.5	0.60	0.79	50.1
5 T1	2239	6.4	0.792	16.7	LOS B	41.2	306.8	0.67	0.65	55.4
Approach	3006	5.8	0.792	17.1	LOS B	41.2	306.8	0.65	0.69	54.0
North: Nuwarra Road (N)										
7 L2	18	0.0	0.876	76.8	LOS F	18.0	127.2	1.00	1.02	28.9
8 T1	296	1.1	1.094	100.2	LOS F	33.9	240.3	1.00	1.11	23.6
$9 \quad \mathrm{R} 2$	213	1.5	1.094	190.2	LOS F	33.9	240.3	1.00	1.39	17.1
Approach	526	1.2	1.094	135.8	LOS F	33.9	240.3	1.00	1.22	20.4
West: Newbridge Road (W)										
10 L2	103	0.0	0.551	21.6	LOS B	17.8	132.7	0.51	0.52	48.4
11 T1	1695	8.6	0.626	14.8	LOS B	20.7	156.5	0.51	0.47	56.8
Approach	1798	8.1	0.626	15.2	LOS B	20.7	156.5	0.51	0.48	56.3
All Vehicles	6121	6.0	1.094	39.4	LOS C	41.2	306.8	0.68	0.72	41.7

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA PM
Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	112
Green Time (sec)	78	22	22
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	28	28
Phase Split	60%	20%	20%

Phase A

I-12 Intersection of Newbridge Road and Governor Macquarie Drive

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)											
1 L2	14	0.0	0.909	84.6	LOS F	17.3	122.1	1.00	1.07	24.1	
2 T1	207	1.0	0.909	80.3	LOS F	17.3	122.1	1.00	1.07	23.8	
3 R 2	720	1.2	1.239	301.6	LOS F	55.9	395.6	1.00	1.68	12.6	
Approach	941	1.1	1.239	249.7	LOS F	55.9	395.6	1.00	1.53	13.8	
East: Newbridge Road (E)											
4 L2	242	3.0	0.178	7.9	LOS A	2.2	15.7	0.19	0.64	58.1	
5 T1	1486	11.6	0.436	14.0	LOS A	16.9	131.3	0.55	0.50	59.8	
6 R2	683	9.9	1.050	154.1	LOS F	36.1	274.4	1.00	1.16	23.9	
Approach	2411	10.3	1.050	53.1	LOS D	36.1	274.4	0.64	0.70	41.6	
North: Governor Macquarie Drive (N)											
7 L2	765	7.8	0.725	52.8	LOS D	23.4	174.6	0.96	0.86	40.2	
8 T1	135	2.3	0.546	64.2	LOS E	8.8	62.9	0.99	0.79	27.0	
$9 \quad \mathrm{R} 2$	179	31.8	1.033	140.2	LOS F	18.4	163.5	1.00	1.19	20.3	
Approach	1079	11.1	1.033	68.7	LOS E	23.4	174.6	0.97	0.91	34.3	
West: Newbridge Road (W)											
10 L2	132	29.9	1.230	272.6	LOS F	162.7	1251.6	1.00	1.93	12.8	
11 T1	3017	7.7	1.230	265.2	LOS F	167.1	1257.9	1.00	1.97	16.6	
12 R 2	5	20.0	0.046	33.1	LOS C	0.2	1.8	0.60	0.68	37.8	
Approach	3155	8.6	1.230	265.1	LOS F	167.1	1257.9	1.00	1.97	16.4	
All Vehicles	7585	8.6	1.239	167.9	LOS F	167.1	1257.9	0.88	1.36	21.9	

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA PM

Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)										
1 L2	11	0.0	0.554	70.4	LOS E	7.2	52.4	1.00	0.79	26.8
2 T1	97	5.4	0.554	66.3	LOS E	7.2	52.4	1.00	0.79	26.5
3 R2	271	0.8	0.641	70.4	LOS E	9.1	64.3	1.00	0.81	32.5
Approach	378	1.9	0.641	69.3	LOS E	9.1	64.3	1.00	0.81	31.0
East: Newbridge Road (E)										
4 L2	688	1.4	0.484	9.5	LOS A	8.3	58.5	0.29	0.70	57.0
5 T1	2771	5.2	0.935	33.0	LOS C	56.1	412.9	0.76	0.79	50.0
6 R2	744	10.3	1.124	214.3	LOS F	48.3	368.3	1.00	1.29	19.1
Approach	4204	5.5	1.124	61.3	LOS E	56.1	412.9	0.73	0.87	39.1
North: Governor Macquarie Drive (N)										
$7 \quad$ L2	614	7.9	0.463	46.7	LOS D	16.6	124.4	0.86	0.81	42.0
8 T1	314	1.7	1.055	145.7	LOS F	32.6	231.3	1.00	1.33	16.2
$9 \quad \mathrm{R} 2$	306	36.0	1.608	636.0	LOS F	70.5	648.6	1.00	2.02	6.1
Approach	1233	13.3	1.608	218.1	LOS F	70.5	648.6	0.93	1.25	16.2
West: Newbridge Road (W)										
10 L2	175	15.4	0.862	46.2	LOS D	45.6	343.3	0.94	0.89	39.0
11 T1	2076	5.9	0.862	38.2	LOS C	46.2	341.9	0.92	0.87	47.7
12 R2	4	0.0	0.071	56.2	LOS D	0.2	1.7	0.81	0.69	29.8
Approach	2255	6.6	0.862	38.9	LOS C	46.2	343.3	0.92	0.87	47.0
All Vehicles	8070	6.8	1.608	79.3	LOS F	70.5	648.6	0.82	0.92	33.9

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA PM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

I-13 Intersection of Moorebank Avenue and M5 Motorway

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 1 AM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 1 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 74 seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand Total veh/h	lows HV \%	Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Moorebank Avenue (S)										
1 L2	422	39.9	0.471	10.7	LOS A	5.4	58.4	0.50	0.72	48.3
2 T1	727	11.8	0.897	43.1	LOS D	16.2	130.3	1.00	1.12	33.7
3 R2	322	7.1	0.470	33.6	LOS C	5.8	43.9	0.91	0.79	36.6
Approach	1471	18.8	0.897	31.7	LOS C	16.2	130.3	0.84	0.93	37.6
East: M5 Motorway on\&off ramp (E)										
4 L2	307	17.6	0.410	11.7	LOS A	4.4	37.6	0.61	0.74	48.3
6 R2	237	6.2	0.246	28.8	LOS C	3.4	25.1	0.82	0.76	40.4
Approach	543	12.6	0.410	19.2	LOS B	4.4	37.6	0.70	0.74	44.3
North: Moorebank Avenue (N)										
7 L2	51	47.9	0.050	7.9	LOS A	0.4	3.5	0.29	0.60	51.1
8 T1	246	22.8	0.328	26.4	LOS B	3.8	34.1	0.88	0.70	40.6
9 R2	454	25.5	0.772	37.8	LOS C	10.0	85.2	0.97	0.88	36.3
Approach	750	26.1	0.772	32.0	LOS C	10.0	85.2	0.90	0.80	38.3
West: M5 Motorway on\&off ramp (W)										
10 L2	1722	7.5	0.977	8.2	LOS A	0.0	0.0	0.00	0.50	51.2
12 R2	640	24.9	0.804	39.2	LOS C	12.4	117.7	0.99	0.96	34.5
Approach	2362	12.2	0.977	16.6	LOS B	12.4	117.7	0.27	0.62	45.6
All Vehicles	5125	16.2	0.977	23.4	LOS B	16.2	130.3	0.57	0.75	41.9

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA AM

Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=74$ seconds (User-Given Phase Times)

Phase Timing Results	A	E	F
Phase	Yes	No	No
Reference Phase	0	24	51
Phase Change Time (sec)	17	20	16
Green Time (sec)	4	4	4
Yellow Time (sec)	3	3	3
All-Red Time (sec)	24	27	23
Phase Time (sec)	32%	36%	31%
Phase Split			

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA PM

Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=94$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand Flows Deg. Satn			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed
	Total	HV				Vehicles	Distance			
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)										
1 L2	558	26.8	0.882	39.6	LOS C	26.4	255.6	0.98	1.00	34.2
2 T1	232	18.8	0.935	64.8	LOS E	6.7	58.0	1.00	1.09	27.6
3 R2	382	13.7	0.356	29.3	LOS C	7.1	59.0	0.77	0.77	38.2
Approach	1172	20.9	0.935	41.2	LOS C	26.4	255.6	0.91	0.94	33.8
East: M5 Motorway on\&off ramp (E)										
4 L2	466	8.6	0.601	18.7	LOS B	10.5	81.4	0.74	0.83	44.1
6 R2	97	21.7	0.177	42.7	LOS D	2.0	16.2	0.89	0.73	34.9
Approach	563	10.8	0.601	22.8	LOS B	10.5	81.4	0.77	0.81	42.1
North: Moorebank Avenue (N)										
7 L2	139	6.1	0.115	7.5	LOS A	1.2	8.7	0.28	0.62	52.6
8 T1	767	8.7	0.865	46.1	LOS D	19.7	152.7	1.00	1.03	32.7
9 R2	1488	7.0	0.920	43.0	LOS D	34.3	254.6	1.00	1.06	34.8
Approach	2394	7.5	0.920	42.0	LOS C	34.3	254.6	0.96	1.03	34.8
West: M5 Motorway on\&off ramp (W)										
10 L2	620	13.8	0.367	5.8	LOS A	0.0	0.0	0.00	0.52	54.4
12 R2	400	38.7	0.895	63.3	LOS E	11.3	122.5	1.00	1.06	27.4
Approach	1020	23.6	0.895	28.3	LOS B	11.3	122.5	0.39	0.73	40.0
All Vehicles	5150	14.1	0.935	37.0	LOS C	34.3	255.6	0.82	0.93	36.2

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA PM

Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 94 seconds (User-Given Phase Times)
Phase Timing Results

I-14 Intersection of M5 Motorway and Hume Highway

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=159$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	4256	4.6	1.027	59.4	LOS E	152.3	1108.5	1.00	1.21	33.2	
3 R2	665	4.1	0.916	46.9	LOS D	19.1	138.5	1.00	0.93	36.6	
Approach	4921	4.5	1.027	57.7	LOS E	152.3	1108.5	1.00	1.17	33.6	
East: M5 Motorway on\&off-ramp (E)											
4 L2	338	5.9	0.134	30.5	LOS C	4.8	35.4	0.60	0.71	41.9	
6 R2	1218	6.9	1.300	368.7	LOS F	75.9	573.8	1.00	1.55	7.1	
Approach	1556	6.7	1.300	295.3	LOS F	75.9	573.8	0.91	1.37	9.3	
North: Hume Highway (N)											
7 L2	770	10.7	0.617	13.6	LOS A	24.1	189.6	0.52	0.73	46.0	
8 T1	1208	6.7	0.490	28.5	LOS B	17.8	131.7	0.62	0.55	43.3	
Approach	1978	8.3	0.617	22.7	LOS B	24.1	189.6	0.58	0.62	44.1	
All Vehicles	8455	5.8	1.300	93.3	LOS F	152.3	1108.5	0.89	1.08	25.2	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	B	C	D
Reference Phase	No	No	No	Yes
Phase Change Time (sec)	20	97	123	0
Green Time (sec)	70	19	29	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	3	3	3	3
Phase Time (sec)	77	26	36	20
Phase Split	48%	16%	23%	13%

Phase A

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA PM

M5 Motorway / Hume Highway
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	2555	3.9	0.624	2.2	LOS A	7.1	51.1	0.12	0.11	58.3	
3 R2	401	1.8	1.023	122.1	LOS F	20.4	145.1	1.00	1.07	22.6	
Approach	2956	3.6	1.023	18.4	LOS B	20.4	145.1	0.24	0.24	48.0	
East: M5 Motorway on\&off-ramp (E)											
4 L2	1487	3.4	1.119	230.2	LOS F	93.0	670.0	1.00	1.30	14.5	
6 R2	1245	6.7	1.267	340.5	LOS F	76.0	573.3	1.00	1.51	7.6	
Approach	2733	4.9	1.267	280.5	LOS F	93.0	670.0	1.00	1.40	10.9	
North: Hume Highway (N)											
7 L2	895	6.9	0.712	14.9	LOS B	28.0	213.6	0.62	0.82	45.3	
8 T1	2837	2.4	0.870	20.5	LOS B	51.6	368.7	0.78	0.73	47.0	
Approach	3732	3.5	0.870	19.2	LOS B	51.6	368.7	0.74	0.75	46.7	
All Vehicles	9421	3.9	1.267	94.7	LOS F	93.0	670.0	0.66	0.78	25.0	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA PM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	97	121
Green Time (sec)	90	17	31
Yellow Time (sec)	4	4	4
All-Red Time (sec)	3	3	3
Phase Time (sec)	97	24	38
Phase Split	61%	15%	24%

Phase A

I-15 Intersection of Cambridge Avenue and Canterbury Road MOVEMENT SUMMARY

Site: I-15 2030 MIMT \& SIMTA OPT 1 AM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 1 AM PEAK 7:45 am - 8:45 am
Roundabout

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Canterbury Road (S)											
1 L2	449	3.5	0.498	6.0	LOS A	3.1	22.3	0.59	0.68	52.9	
2 T1	8	0.0	0.859	9.3	LOS A	13.9	98.6	0.90	0.90	49.9	
$3 \quad \mathrm{R} 2$	1058	2.0	0.859	14.7	LOS B	13.9	98.6	0.90	0.90	50.0	
Approach	1516	2.4	0.859	12.1	LOS A	13.9	98.6	0.81	0.84	50.7	
East: Cambridge Avenue (E)											
4 L2	307	3.1	0.163	3.5	LOS A	0.0	0.0	0.00	0.43	56.5	
5 T1	81	7.8	0.084	5.2	LOS A	0.5	3.6	0.52	0.57	53.4	
6 R2	54	9.8	0.084	10.5	LOS A	0.5	3.6	0.52	0.59	53.7	
Approach	442	4.8	0.163	4.6	LOS A	0.5	3.6	0.16	0.48	55.6	
North: Railway Parade (N)											
7 L2	328	0.6	0.801	39.4	LOS C	10.1	70.9	1.00	1.36	36.3	
8 T1	3	0.0	0.578	26.9	LOS B	4.4	31.1	0.98	1.13	40.6	
9 R2	168	1.9	0.578	32.3	LOS C	4.4	31.1	0.98	1.13	38.8	
Approach	499	1.1	0.801	36.9	LOS C	10.1	70.9	0.99	1.28	37.1	
West: Glenfield Road (W)											
10 L2	399	6.3	1.327	185.9	LOS F	59.8	442.6	1.00	2.78	13.3	
11 T1	215	7.8	1.327	186.6	LOS F	59.8	442.6	1.00	2.71	13.4	
12 R2	367	6.9	1.327	193.7	LOS F	49.0	363.8	1.00	2.55	13.5	
Approach	981	6.9	1.327	189.0	LOS F	59.8	442.6	1.00	2.68	13.4	
All Vehicles	3438	3.8	1.327	65.2	LOS E	59.8	442.6	0.81	1.38	28.5	

MOVEMENT SUMMARY

θ Site: I-15 2030 MIMT \& SIMTA OPT 1 PM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 1 PM PEAK 4:30 pm - 5:30 pm
Roundabout

Movement Performance - Vehicles										
Mov ID ODMo v	Deman Total veh/h	$\begin{array}{r} \text { Iows } \\ \text { HV } \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Canterbury Road (S)										
1 L2	338	2.2	0.479	9.0	LOS A	3.1	22.2	0.79	0.93	50.8
2 T1	6	0.0	0.408	7.4	LOS A	2.5	18.0	0.77	0.92	51.2
3 R2	334	1.3	0.408	12.8	LOS A	2.5	18.0	0.77	0.92	51.3
Approach	678	1.7	0.479	10.8	LOS A	3.1	22.2	0.78	0.93	51.1
East: Cambridge Avenue (E)										
4 L2	1170	2.2	0.617	3.6	LOS A	0.0	0.0	0.00	0.43	56.3
5 T1	302	7.7	0.464	7.3	LOS A	3.7	26.9	0.76	0.76	51.9
6 R2	339	0.9	0.464	12.5	LOS A	3.7	26.9	0.82	0.80	52.2
Approach	1811	2.8	0.617	5.9	LOS A	3.7	26.9	0.28	0.55	54.8
North: Railway Parade (N)										
7 L2	125	1.7	0.191	7.9	LOS A	1.0	6.8	0.69	0.80	52.8
8 T1	0	0.0	0.000	0.0	NA	0.0	0.0	0.00	0.00	0.0
9 R2	240	8.3	0.295	12.7	LOS A	1.7	12.7	0.72	0.86	50.0
Approach	365	6.1	0.295	11.0	LOS A	1.7	12.7	0.71	0.84	51.0
West: Glenfield Road (W)										
10 L2	271	4.7	0.433	8.7	LOS A	2.9	20.7	0.76	0.85	51.1
11 T1	54	0.0	0.433	8.5	LOS A	2.9	20.7	0.76	0.85	53.0
12 R2	451	3.7	0.504	13.9	LOS A	4.0	28.6	0.80	0.91	49.3
Approach	775	3.8	0.504	11.7	LOS A	4.0	28.6	0.78	0.89	50.1
All Vehicles	3629	3.2	0.617	8.6	LOS A	4.0	28.6	0.52	0.72	52.7

5. On the wider road network - 2030 cumulative scenario 2

I-01 Intersection of the Hume Highway and Orange Grove Road

MOVEMENT SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand Total	flows HV	Deg. Satn	Average Delay	Level of Service	95\% Bac Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
NorthEast: Hume Highway (NE)										
25 T1	973	11.0	0.696	24.5	LOS B	20.1	154.2	0.85	0.77	35.6
26 R2	389	10.0	0.907	85.9	LOS F	16.8	127.3	1.00	0.92	23.9
Approach	1362	10.7	0.907	42.1	LOS C	20.1	154.2	0.89	0.81	30.0
NorthWest: Orange Grove Road (NW)										
27 L2	602	6.5	0.712	18.8	LOS B	19.5	144.4	0.54	0.81	44.8
29 R2	1355	8.4	1.008	104.2	LOS F	43.9	334.0	1.00	1.02	18.6
Approach	1957	7.8	1.061	77.9	LOS F	43.9	334.0	0.86	0.95	23.3
SouthWest: Hume Highway (SW)										
30 L2	1280	8.6	0.462	11.7	LOS A	14.5	110.3	0.34	0.70	50.1
31 T1	2186	4.9	0.805	22.9	LOS B	39.5	287.9	0.71	0.65	40.2
Approach	3467	6.3	0.805	18.7	LOS B	39.5	287.9	0.57	0.67	44.0
All Vehicles	6786	7.6	1.061	40.5	LOS C	43.9	334.0	0.72	0.78	31.7

PHASING SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase times specified by the user
Sequence: TCS 866 AM - Modified
Movement Class: All Movement Classes
Input Sequence: A, B, C
Output Sequence: A, B, C

Phase Timing Results	A	B	C
Phase	Yes	No	No
Reference Phase	0	84	108
Phase Change Time (sec)	77	17	36
Green Time (sec)	5	4	5
Yellow Time (sec)	2	2	2
All-Red Time (sec)	84	23	43
Phase Time (sec)	56%	15%	29%
Phase Split			

MOVEMENT SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 2 PM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
NorthEast: Hume Highway (NE)											
25 T1	1766	3.5	0.921	42.2	LOS C	48.3	348.3	0.91	0.96	27.6	
26 R2	816	2.8	0.958	61.5	LOS E	22.8	163.7	1.00	1.00	29.2	
Approach	2581	3.3	0.958	48.3	LOS D	48.3	348.3	0.94	0.97	28.2	
NorthWest: Orange Grove Road (NW)											
27 L2	391	4.3	0.393	14.2	LOS A	8.3	60.0	0.33	0.65	48.0	
29 R2	1384	4.9	1.087	119.2	LOS F	50.2	371.0	1.00	1.07	17.0	
Approach	1775	4.8	1.087	96.1	LOS F	50.2	371.0	0.85	0.98	20.2	
SouthWest: Hume Highway (SW)											
30 L2	1322	4.7	0.787	19.7	LOS B	21.0	155.1	0.80	0.84	44.7	
31 T1	1112	5.4	1.000	88.1	LOS F	37.4	274.4	1.00	1.10	18.1	
Approach	2435	5.0	1.000	51.0	LOS D	37.4	274.4	0.89	0.96	28.5	
All Vehicles	6791	4.3	1.087	61.7	LOS E	50.2	371.0	0.90	0.97	25.4	

PHASING SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 2 PM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase times specified by the user
Sequence: TCS 866 PM - Modified
Movement Class: All Movement Classes
Input Sequence: A, B, C, D
Output Sequence: A, B, C, D
Phase Timing Results

Phase	A	B	C	D
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	53	80	124
Green Time (sec)	47	20	38	19
Yellow Time (sec)	5	4	5	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	54	26	45	25
Phase Split	36%	17%	30%	17%

I-02 Intersection of the Hume Highway and Elizabeth Drive

MOVEMENT SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S) per pren											
1 L2	137	5.4	0.155	22.6	LOS B	3.7	27.3	0.40	0.68	36.5	
2 T1	2384	7.6	0.969	61.5	LOS E	68.0	511.2	0.99	1.03	19.7	
Approach	2521	7.4	0.988	59.4	LOS E	68.0	511.2	0.95	1.01	20.3	
East: Elizabeth Drive (E)											
4 L2	39	5.4	0.426	59.6	LOS E	10.5	77.4	0.91	0.82	18.6	
5 T1	502	5.7	0.426	55.8	LOS D	11.9	87.2	0.90	0.82	23.7	
6 R2	156	2.7	0.754	78.1	LOS F	11.7	83.5	1.00	0.87	14.8	
Approach	697	5.0	0.754	61.0	LOS E	11.9	87.2	0.92	0.83	21.1	
North: Hume Highway (N)											
7 L2	82	2.6	0.654	25.9	LOS B	24.5	186.1	0.61	0.58	31.5	
8 T1	1777	10.0	0.654	19.8	LOS B	24.8	190.4	0.60	0.55	35.9	
9 R2	353	9.6	1.170	171.2	LOS F	19.8	149.6	1.00	1.15	10.5	
Approach	2212	9.6	1.170	44.2	LOS D	24.8	190.4	0.66	0.65	24.6	
West: Elizabeth Drive (W)											
10 L2	627	5.2	1.011	93.3	LOS F	57.3	419.3	1.00	1.01	16.3	
11 T1	1089	3.0	1.050	107.6	LOS F	52.2	375.0	1.00	1.18	14.2	
12 R2	518	7.0	1.296	227.7	LOS F	33.4	249.3	1.00	1.26	8.3	
Approach	2235	4.5	1.296	131.4	LOS F	57.3	419.3	1.00	1.15	12.5	
All Vehicles	7665	7.0	1.296	76.2	LOS F	68.0	511.2	0.88	0.93	17.7	

PHASING SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	D	F	A	E
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	66	89	131
Green Time (sec)	60	17	36	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	66	23	42	19
Phase Split	44%	15%	28%	13%

Phase D

MOVEMENT SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 2 PM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Hume Highway (S)										
1 L2	324	5.2	0.479	39.9	LOS C	15.3	112.5	0.70	0.78	28.3
2 T1	1567	6.4	0.945	68.9	LOS E	44.7	334.3	0.98	1.02	18.2
Approach	1892	6.2	0.945	64.0	LOS E	44.7	334.3	0.93	0.98	19.6
East: Elizabeth Drive (E)										
4 L2	128	0.8	0.984	98.9	LOS F	31.7	225.4	1.00	1.08	12.9
5 T1	1082	2.3	0.984	94.6	LOS F	40.3	287.5	1.00	1.10	16.3
6 R2	172	0.0	1.066	131.4	LOS F	17.1	119.5	1.00	1.12	9.9
Approach	1382	1.9	1.066	99.6	LOS F	40.3	287.5	1.00	1.10	15.0
North: Hume Highway (N)										
7 L2	66	4.8	0.874	25.5	LOS B	43.4	316.9	0.74	0.72	32.1
8 T1	2474	4.1	0.874	19.6	LOS B	44.1	322.3	0.74	0.71	36.2
9 R2	961	3.0	0.917	75.8	LOS F	37.4	268.2	1.00	0.94	19.6
Approach	3501	3.8	0.917	35.1	LOS C	44.1	322.3	0.81	0.78	28.5
West: Elizabeth Drive (W)										
10 L2	325	5.8	0.434	34.2	LOS C	13.6	100.2	0.62	0.76	29.6
11 T1	529	4.4	0.698	61.8	LOS E	17.6	127.6	0.96	0.82	20.9
12 R2	309	2.4	0.978	105.6	LOS F	13.7	98.2	1.00	1.00	15.4
Approach	1164	4.2	0.978	65.7	LOS E	17.6	127.6	0.88	0.85	20.6
All Vehicles	7939	4.1	1.066	57.7	LOS E	44.7	334.3	0.88	0.89	21.5

PHASING SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	D	F	A	E
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	53	72	108
Green Time (sec)	47	13	30	36
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	53	19	36	42
Phase Split	35%	13%	24%	28%

I-03 Intersection of the Hume Highway and Memorial Avenue

MOVEMENT SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	157	1.3	0.976	67.5	LOS E	68.5	511.8	1.00	1.06	27.0	
2 T1	2129	8.3	0.976	59.1	LOS E	69.8	528.2	0.94	1.01	25.4	
3 R2	267	0.0	1.137	158.3	LOS F	29.3	204.9	1.00	1.12	12.4	
Approach	2553	7.0	1.137	70.0	LOS E	69.8	528.2	0.95	1.03	23.1	
East: Memorial Avenue (E)											
4 L2	29	28.6	1.264	214.3	LOS F	21.6	165.9	1.00	1.33	9.8	
5 T1	164	7.7	1.264	209.5	LOS F	21.6	165.9	1.00	1.33	9.6	
6 R2	134	18.1	1.264	214.6	LOS F	19.4	155.3	1.00	1.32	6.9	
Approach	327	13.8	1.264	212.0	LOS F	21.6	165.9	1.00	1.33	8.6	
North: Hume Highway (N)											
7 L2	121	6.1	0.103	12.4	LOS A	2.6	19.4	0.36	0.64	39.4	
8 T1	1787	12.5	0.768	28.7	LOS C	33.4	261.9	0.75	0.68	36.2	
9 R2	101	3.1	0.439	72.0	LOS F	7.0	50.1	0.97	0.79	21.4	
Approach	2009	11.7	0.768	29.9	LOS C	33.4	261.9	0.74	0.68	35.1	
West: Memorial Avenue (W)											
10 L2	128	3.3	1.183	159.2	LOS F	36.3	259.0	1.00	1.27	12.6	
11 T1	460	1.6	1.183	162.1	LOS F	46.5	332.1	1.00	1.31	11.7	
12 R2	166	3.2	1.183	173.8	LOS F	46.5	332.1	1.00	1.34	14.6	
Approach	755	2.2	1.183	164.2	LOS F	46.5	332.1	1.00	1.31	12.5	
All Vehicles	5644	8.4	1.264	76.6	LOS F	69.8	528.2	0.88	0.96	21.4	

PHASING SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E	F
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	75	108	125
Green Time (sec)	69	27	11	19
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	75	33	17	25
Phase Split	50%	22%	11%	17%

MOVEMENT SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	123	0.9	0.839	48.8	LOS D	38.8	287.8	0.92	0.89	31.7	
2 T1	1678	6.8	0.839	40.6	LOS C	39.7	297.6	0.89	0.83	30.9	
3 R2	116	0.0	0.779	84.4	LOS F	8.9	62.5	1.00	0.86	19.4	
Approach	1917	6.0	0.839	43.8	LOS D	39.7	297.6	0.89	0.84	30.0	
East: Memorial Avenue (E)											
4 L2	55	0.0	1.228	195.7	LOS F	34.9	247.9	1.00	1.40	10.7	
5 T1	289	2.2	1.228	191.2	LOS F	34.9	247.9	1.00	1.39	10.3	
6 R2	211	6.0	1.228	196.2	LOS F	32.3	235.9	1.00	1.32	7.5	
Approach	555	3.4	1.228	193.5	LOS F	34.9	247.9	1.00	1.37	9.3	
North: Hume Highway (N)											
7 L2	152	2.8	0.090	8.4	LOS A	2.0	14.7	0.24	0.61	43.5	
8 T1	2955	3.8	0.937	19.6	LOS B	63.8	463.9	0.68	0.68	41.4	
$9 \quad \mathrm{R} 2$	214	2.0	0.729	42.6	LOS D	9.2	65.2	1.00	0.83	28.2	
Approach	3320	3.6	0.937	20.6	LOS B	63.8	463.9	0.68	0.69	40.2	
West: Memorial Avenue (W)											
10 L2	82	1.3	0.947	89.9	LOS F	17.2	121.7	1.00	1.08	18.9	
11 T1	209	1.0	0.947	86.8	LOS F	21.4	150.2	1.00	1.06	18.0	
12 R2	171	0.0	0.947	93.9	LOS F	21.4	150.2	1.00	1.03	21.9	
Approach	462	0.7	0.947	90.0	LOS F	21.4	150.2	1.00	1.05	19.7	
All Vehicles	6254	4.1	1.228	48.2	LOS D	63.8	463.9	0.80	0.82	27.9	

PHASING SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	C	D	E	F
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	67	81	108	132
Green Time (sec)	61	8	21	18	12
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	67	14	27	24	18
Phase Split	45%	9%	18%	16%	12%

I-04 Intersection of the Hume Highway and Hoxton Park Drive

MOVEMENT SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Hoxton Park Road / Macquarie Street
2030 MIMT \& SIMTA AM Option 2 PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	109	12.7	0.096	8.8	LOS A	0.9	7.2	0.13	0.57	50.6	
2 T1	2153	6.3	0.847	31.0	LOS C	43.8	326.0	0.83	0.77	38.1	
3 R 2	1213	1.9	1.038	98.4	LOS F	46.4	330.1	1.00	1.09	17.7	
Approach	3474	4.9	1.038	53.8	LOS D	46.4	330.1	0.87	0.88	28.7	
East: Macquarie Street (E)											
4 L2	361	5.8	0.230	21.3	LOS B	5.5	40.4	0.66	0.73	39.0	
5 T1	545	4.6	1.080	130.0	LOS F	27.8	202.5	1.00	1.19	16.2	
Approach	906	5.1	1.080	86.7	LOS F	27.8	202.5	0.86	1.01	20.6	
North: Hume Highway (N)											
7 L2	236	15.6	1.022	53.1	LOS D	45.4	353.1	1.00	1.01	28.0	
8 T1	1501	9.8	1.022	86.5	LOS F	56.7	436.0	1.00	1.10	23.0	
9 R2	246	19.2	1.257	211.1	LOS F	30.8	251.3	1.00	1.27	13.2	
Approach	1984	11.6	1.257	98.0	LOS F	56.7	436.0	1.00	1.11	21.2	
West: Hoxton Park Road (W)											
10 L2	345	18.0	0.583	47.3	LOS D	20.3	164.2	0.87	0.83	32.5	
11 T1	1372	4.8	1.131	164.8	LOS F	55.8	406.4	1.00	1.34	13.5	
12 R2	393	4.6	1.148	140.7	LOS F	23.6	172.9	1.00	1.10	16.9	
Approach	2109	6.9	1.148	141.1	LOS F	55.8	406.4	0.98	1.21	15.9	
All Vehicles	8473	7.0	1.257	89.4	LOS F	56.7	436.0	0.92	1.03	21.6	

PHASING SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 2 AM

Hume Highway / Hoxton Park Road / Macquarie Street 2030 MIMT \& SIMTA AM Option 2 PEAK 7:45 am - 8:45 am Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	C	E	D	F
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	49	77	100	126
Green Time (sec)	43	22	17	20	18
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	49	28	23	26	24
Phase Split	33%	19%	15%	17%	16%

MOVEMENT SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Hoxton Park Road / Macquarie Street
2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	202	6.5	0.171	9.6	LOS A	2.1	15.4	0.16	0.59	50.2	
2 T1	1634	6.8	0.655	24.3	LOS B	26.0	195.0	0.65	0.58	41.4	
3 R2	448	1.2	0.934	93.1	LOS F	18.7	132.4	1.00	0.96	18.4	
Approach	2284	5.7	0.934	36.5	LOS C	26.0	195.0	0.67	0.66	35.0	
East: Macquarie Street (E)											
4 L2	785	1.5	1.024	141.2	LOS F	35.3	250.1	0.98	1.03	13.6	
5 T1	706	3.3	1.087	125.9	LOS F	35.4	254.8	1.00	1.19	16.5	
Approach	1492	2.3	1.087	133.9	LOS F	35.4	254.8	0.99	1.10	14.9	
North: Hume Highway (N)											
7 L2	101	5.2	0.966	33.5	LOS C	74.4	541.1	0.94	0.98	36.3	
8 T1	2838	3.5	0.966	28.3	LOS B	75.8	550.8	0.83	0.86	39.3	
$9 \quad \mathrm{R} 2$	283	6.3	1.406	276.3	LOS F	39.8	293.6	1.00	1.37	10.6	
Approach	3222	3.8	1.406	50.3	LOS D	75.8	550.8	0.85	0.91	31.1	
West: Hoxton Park Road (W)											
10 L2	252	4.2	0.395	44.4	LOS D	13.7	99.2	0.80	0.80	33.6	
11 T1	717	4.3	0.439	46.6	LOS D	14.2	102.8	0.87	0.73	30.4	
12 R2	387	3.5	1.258	176.8	LOS F	26.1	189.9	1.00	1.18	14.3	
Approach	1356	4.0	1.258	83.4	LOS F	26.1	189.9	0.89	0.87	23.0	
All Vehicles	8353	4.1	1.406	66.8	LOS E	75.8	550.8	0.83	0.87	26.0	

PHASING SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Hoxton Park Road / Macquarie Street 2030 MIMT \& SIMTA Option 2 PM PEAK 4:30 pm - 5:30 pm Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	E	D	F
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	78	98	127
Green Time (sec)	72	14	23	17
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	78	20	29	23
Phase Split	52%	13%	19%	15%

Phase A

I-05 Intersection of the Hume Highway and Reilly Street

MOVEMENT SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Hignway (S)											
1 L2	80	2.6	0.943	32.3	LOS C	72.0	526.9	0.86	0.88	36.1	
2 T1	3174	4.5	0.943	25.9	LOS B	72.0	526.9	0.79	0.81	35.8	
3 R2	14	7.7	0.112	24.3	LOS B	0.5	3.8	0.51	0.68	36.2	
Approach	3268	4.5	0.943	26.1	LOS B	72.0	526.9	0.79	0.81	35.8	
East: Congressional Drive (E)											
4 L2	49	2.1	0.263	59.1	LOS E	5.9	42.6	0.89	0.74	24.5	
5 T1	46	4.5	0.263	54.5	LOS D	5.9	42.6	0.89	0.74	24.0	
6 R2	91	4.7	0.428	67.2	LOS E	6.1	44.6	0.95	0.79	18.7	
Approach	186	4.0	0.428	61.9	LOS E	6.1	44.6	0.92	0.76	21.6	
North: Hume Hignway (N)											
7 L2	32	3.3	0.569	18.2	LOS B	22.6	172.1	0.53	0.57	39.2	
8 T1	1891	8.9	0.569	11.2	LOS A	25.8	196.7	0.51	0.49	46.4	
9 R2	99	1.1	0.772	60.2	LOS E	6.1	43.1	1.00	0.93	22.6	
Approach	2022	8.4	0.772	13.7	LOS A	25.8	196.7	0.53	0.52	44.0	
West: Reilly Street (W)											
10 L2	120	3.5	0.274	50.3	LOS D	7.6	55.2	0.83	0.76	24.5	
11 T1	14	7.7	0.274	45.7	LOS D	7.6	55.2	0.83	0.76	25.6	
12 R2	237	1.3	1.039	127.9	LOS F	23.6	167.1	1.00	1.10	16.2	
Approach	371	2.3	1.039	99.7	LOS F	23.6	167.1	0.94	0.98	18.1	
All Vehicles	5846	5.7	1.039	27.6	LOS B	72.0	526.9	0.72	0.72	34.8	

PHASING SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 2 AM
Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E2
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	100	138
Green Time (sec)	94	32	6
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	100	38	12
Phase Split	67%	25%	8%

Phase A

MOVEMENT SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Hignway (S)											
1 L2	226	0.5	0.682	19.9	LOS B	27.3	199.8	0.54	0.58	41.7	
2 T1	2097	6.0	0.682	11.9	LOS A	27.3	199.8	0.47	0.46	45.5	
3 R 2	21	5.0	0.391	30.4	LOS C	1.0	7.5	0.62	0.73	33.4	
Approach	2345	5.4	0.682	12.8	LOS A	27.3	199.8	0.48	0.47	44.8	
East: Congressional Drive (E)											
4 L2	42	2.5	0.205	61.9	LOS E	4.2	29.6	0.90	0.73	23.8	
5 T1	24	0.0	0.205	57.3	LOS E	4.2	29.6	0.90	0.73	23.3	
6 R2	52	0.0	0.236	65.6	LOS E	3.4	23.6	0.92	0.75	19.1	
Approach	118	0.9	0.236	62.6	LOS E	4.2	29.6	0.91	0.74	21.7	
North: Hume Hignway (N)											
7 L2	67	0.0	0.986	31.7	LOS C	89.4	645.9	0.79	0.86	30.9	
8 T1	3696	3.0	0.986	27.1	LOS B	89.4	645.9	0.60	0.69	35.2	
$9 \quad \mathrm{R} 2$	178	1.2	0.813	59.5	LOS E	11.7	82.4	1.00	1.01	22.7	
Approach	3941	2.9	0.986	28.6	LOS C	89.4	645.9	0.62	0.70	34.3	
West: Reilly Street (W)											
10 L2	65	0.0	0.235	56.1	LOS D	5.8	40.6	0.86	0.74	23.5	
11 T1	32	0.0	0.235	51.6	LOS D	5.8	40.6	0.86	0.74	24.5	
12 R2	261	1.6	1.120	156.3	LOS F	28.6	203.3	1.00	1.17	14.1	
Approach	358	1.2	1.120	128.8	LOS F	28.6	203.3	0.96	1.06	15.5	
All Vehicles	6762	3.7	1.120	29.0	LOS C	89.4	645.9	0.59	0.64	34.1	

PHASING SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 2 PM

Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E2
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	98	133
Green Time (sec)	92	29	11
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	98	35	17
Phase Split	65%	23%	11%

I-06 Intersection of Newbridge Road and Moorebank Avenue

MOVEMENT SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 2 AM

Network: 2030 MIMT \& SIMTA OPT 2 AM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo v	Demand Flows Total HV veh/h		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
1 L2	1535	3.2				1232	3.2	0.636	19.0	LOS B	13.7	98.3	0.57	0.82	42.3
3 R2	1402	11.4	1128	11.7	0.683	15.2	LOS B	14.4	113.1	0.43	0.69	52.4			
Approach	2937	7.1	2360 N1	7.3	0.683	17.2	LOS B	14.4	113.1	0.50	0.76	47.8			
East: Newbridge Road (E)															
4 L2	721	21.2	721	21.2	0.659	19.5	LOS B	9.7	81.4	0.77	0.82	51.2			
5 T1	965	5.1	965	5.1	1.260	311.5	LOS F	77.3	564.9	1.00	1.91	14.7			
Approach	1686	12.0	1686	12.0	1.260	186.6	LOS F	77.3	564.9	0.90	1.44	19.0			
West: Newbridge Road (W)															
11 T1	1581	6.5	1581	6.5	0.852	12.4	LOS A	30.8	227.8	0.63	0.60	60.9			
12 R2	889	7.6	889	7.6	1.716	701.0	LOS F	104.1	777.5	1.00	2.02	3.0			
Approach	2471	6.9	2471	6.9	1.716	260.3	LOS F	104.1	777.5	0.77	1.11	13.8			
All Vehicles	7094	8.2	6517 N1	8.9	1.716	153.2	LOS F	104.1	777.5	0.70	1.07	19.3			

PHASING SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 2 AM

Network: 2030 MIMT \& SIMTA OPT 2 AM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)
Phase Timing Results

MOVEMENT SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 2 PM

中 ${ }^{\text {¢ }}$ Network: 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles													
Mov ID ODMo v	Demand Flows Arrival Flows Deg. Satn Total HV Total HV					Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
						Vehicles		Distance					
	veh/h	\%	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)													
1 L2	1022	2.9	903	3.0	0.515	22.6	LOS B	13.5	96.8	0.57	0.75	39.8	
3 R2	981	11.2	870	11.6	1.142	186.3	LOS F	16.7	130.6	1.00	1.42	16.1	
Approach	2003	6.9	1774 N1	7.2	1.142	102.9	LOS F	16.7	130.6	0.78	1.08	20.9	
East: Newbridge Road (E)													
4 L2	1272	7.2	1272	7.2	1.116	197.7	LOS F	80.5	607.2	1.00	1.32	14.6	
5 T1	1373	4.8	1373	4.8	0.923	51.1	LOS D	42.7	311.4	1.00	1.04	43.3	
Approach	2644	6.0	2644	6.0	1.116	121.6	LOS F	80.5	607.2	1.00	1.17	25.1	
West: Newbridge Road (W)													
11 T1	1129	4.0	1129	4.0	0.442	9.3	LOS A	14.6	105.8	0.50	0.45	62.9	
12 R2	1120	2.8	1120	2.8	1.206	238.9	LOS F	76.0	544.9	1.00	1.48	8.0	
Approach	2249	3.4	2249	3.4	1.206	123.6	LOS F	76.0	544.9	0.75	0.97	22.1	
All Vehicles	6897	5.4	6667 N1	5.6	1.206	117.3	LOS F	80.5	607.2	0.86	1.08	23.1	

PHASING SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 2 PM
\$中 Network: 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	44	76
Green Time (sec)	38	26	34
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	44	32	40
Phase Split	38%	28%	34%

I-07 Intersection of Moorebank Avenue and Heathcote Road

MOVEMENT SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 2 AM

Network: 2030 MIMT \& SIMTA OPT 2 AM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo v	Demand Flows Total HV veh/h		Arrival Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
2 T1	1948	7.0				1769	7.1	1.168	198.5	LOS F	58.4	440.6	1.00	1.86	4.8
3 R2	23	18.2	21	18.4	0.190	71.8	LOS F	1.4	11.0	0.98	0.71	30.6			
Approach	1972	7.2	1790 N1	7.2	1.168	197.0	LOS F	58.4	440.6	1.00	1.85	5.0			
East: Heathcote Road (E)															
4 L2	29	57.1	29	57.1	1.444	484.0	LOS F	102.4	771.5	1.00	1.95	6.8			
6 R2	952	5.9	952	5.9	1.444	483.8	LOS F	102.4	771.5	1.00	1.95	6.8			
Approach	981	7.4	981	7.4	1.444	483.8	LOS F	102.4	771.5	1.00	1.95	6.8			
North: Moorebank Avenue (N)															
7 L2	795	7.9	610	9.0	0.378	10.7	LOS A	12.1	91.2	0.54	0.71	51.4			
8 T1	833	19.3	651	21.6	0.383	21.5	LOS B	12.8	108.3	0.66	0.58	13.1			
Approach	1628	13.7	$1261{ }^{\text {N1 }}$	15.5	0.383	16.3	LOS B	12.8	108.3	0.60	0.64	40.9			
All Vehicles	4581	9.6	4032 N1	10.9	1.444	210.3	LOS F	102.4	771.5	0.87	1.50	8.4			

PHASING SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 2 AM
\$ゆ Network: 2030 MIMT \& SIMTA OPT 2 AM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Phase Timing Results	B	A	D
Phase	Yes	No	No
Reference Phase	0	15	88
Phase Change Time (sec)	9	67	39
Green Time (sec)	4	4	4
Yellow Time (sec)	2	2	2
All-Red Time (sec)	15	73	45
Phase Time (sec)	11%	55%	34%
Phase Split			

Phase B

MOVEMENT SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 2 PM

㿾 Network: 2030 MIMT \& SIMTA OPT 2 PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles																	
Mov ID ODMo v	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV				Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed				
			Vehicles	Distance													
			veh/h	\%		v/c	sec		veh	m		per veh	km/h				
South: Moorebank Avenue (S)																	
2 T1	1221	9.0					1221	9.0		0.970	72.2	LOS F	56.8	432.9	0.99	1.28	11.6
$3 \quad \mathrm{R} 2$	48	8.7	48	8.7		0.401	64.7	LOS E	2.8	20.9	1.00	0.74	32.2				
Approach	1269	9.0	1269	9.0		0.970	71.9	LOS F	56.8	432.9	0.99	1.26	12.9				
East: Heathcote Road (E)																	
4 L2	76	19.4	76	19.4		1.442	454.6	LOS F	95.1	707.4	1.00	2.03	7.1				
6 R2	812	5.2	812	5.2		1.442	453.8	LOS F	95.1	707.4	1.00	2.04	7.1				
Approach	887	6.4	887	6.4		1.442	453.9	LOS F	95.1	707.4	1.00	2.04	7.1				
North: Moorebank Avenue (N)																	
7 L2	884	3.7	764	3.8		0.361	7.5	LOS A	5.1	36.6	0.24	0.61	53.8				
8 T1	1491	6.5	1290	6.7		0.673	6.3	LOS A	11.8	88.8	0.35	0.32	29.2				
Approach	2375	5.5	2054 N1	5.6		0.673	6.7	LOS A	11.8	88.8	0.31	0.43	48.4				
All Vehicles	4532	6.6	4211 N1	7.1		1.442	120.6	LOS F	95.1	707.4	0.66	1.02	12.8				

PHASING SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 2 PM
\$ Network: 2030 MIMT \& SIMTA OPT 2 PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)
Phase Timing Results

Phase	B	A	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	14	80
Green Time (sec)	8	60	30
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	14	66	36
Phase Split	12%	57%	31%

I-08 Intersection of Moorebank Avenue and Industry Park Access

MOVEMENT SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 2 AM

\$ Network: 2030 MIMT \& SIMTA OPT 2 AM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Total HV	Arrival Total	$\begin{gathered} \text { Flows } \\ \text { HV } \end{gathered}$	Deg. Satn	Average Delay	Level of Service	95\% Back Vehicles	Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h \%	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
1 L2	913.5	91	3.5	0.056	6.1	LOS A	0.4	2.6	0.12	0.58	43.1
2 T1	19296.4	1929	6.4	1.258	294.8	LOS F	169.6	1272.1	1.00	2.23	5.5
Approach	20206.3	2020	6.3	1.258	281.8	LOS F	169.6	1272.1	0.96	2.15	5.8
North: Moorebank Avenue (N)											
8 T1	75418.0	587	20.1	0.208	2.5	LOS A	3.9	32.4	0.22	0.20	56.9
9 R2	$65 \quad 38.7$	52	41.7	0.990	105.3	LOS F	4.3	40.9	1.00	1.02	12.6
Approach	81919.7	639 N1	21.8	0.990	10.9	LOS A	4.3	40.9	0.29	0.26	47.5
West: Industry Park Access (W)											
10 L2	3462.5	34	62.5	0.415	64.9	LOS E	2.3	24.3	0.95	0.73	9.6
12 R2	$58 \quad 72.7$	58	72.7	0.413	68.0	LOS E	2.7	31.4	0.98	0.73	19.8
Approach	9269.0	92	69.0	0.415	66.9	LOS E	2.7	31.4	0.97	0.73	16.8
All Vehicles	293112.0	2751 N1	12.8	1.258	211.7	LOS F	169.6	1272.1	0.80	1.67	8.2

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 2 AM

中审 Network: 2030 MIMT \& SIMTA OPT 2 AM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	116
Green Time (sec)	110	11
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	116	17
Phase Split	87%	13%

MOVEMENT SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 2 PM

Network: 2030 MIMT \& SIMTA OPT 2 PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (Network Cycle Time)

Movement Performance - Vehicles															
Mov ID ODMo v	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
1 L2	11	30.0				11	30.0	0.009	6.6	LOS A	0.1	0.5	0.14	0.56	42.9
2 T1	1191	8.3	1191	8.3	0.474	4.9	LOS A	12.7	96.5	0.38	0.35	51.6			
Approach	1201	8.5	1201	8.5	0.474	4.9	LOS A	12.7	96.5	0.38	0.35	51.4			
North: Moorebank Avenue (N)															
8 T1	1556	5.6	1338	5.6	0.462	4.8	LOS A	12.9	96.1	0.38	0.35	54.3			
9 R2	25	62.5	22	62.4	0.162	15.6	LOS B	0.5	5.6	0.42	0.66	32.2			
Approach	1581	6.5	1360 N1	6.5	0.462	5.0	LOS A	12.9	96.1	0.38	0.35	53.9			
West: Industry Park Access (W)															
10 L2	34	15.6	34	15.6	0.090	4.0	LOS A	0.4	3.2	0.27	0.39	26.5			
12 R2	189	10.0	189	10.0	0.455	54.9	LOS D	5.2	39.6	0.97	0.77	22.7			
Approach	223	10.8	223	10.8	0.455	47.2	LOS D	5.2	39.6	0.87	0.71	22.9			
All Vehicles	3005	7.6	2784 N1	8.2	0.474	8.3	LOS A	12.9	96.5	0.42	0.38	47.8			

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 2 PM

Network: 2030 MIMT \& SIMTA OPT 2 PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (Network Cycle Time)
Phase Timing Results

Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	96
Green Time (sec)	90	14
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	96	20
Phase Split	83%	17%

I-09 Intersection of Moorebank Avenue and Church Road

MOVEMENT SUMMARY

∇ Site: I-09 2030 MIMT \& SIMTA OPT 2 AM

Moorebank Avenue / Church Road
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	2132	7.8	0.793	6.7	LOS A	11.8	89.6	0.14	0.10	53.5	
3 R2	284	8.5	0.793	31.3	LOS C	11.8	89.6	1.00	0.72	37.8	
Approach	2416	7.9	0.992	9.6	NA	11.8	89.6	0.24	0.18	51.0	
East: Church Road (E)											
4 L2	204	15.8	0.269	7.7	LOS A	1.1	8.8	0.52	0.75	47.1	
6 R2	7	0.0	0.945	693.1	LOS F	2.3	16.1	1.00	1.05	4.7	
Approach	211	15.2	0.945	31.6	LOS C	2.3	16.1	0.54	0.76	35.9	
North: Moorebank Avenue (N)											
7 L2	37	0.0	0.244	5.6	LOS A	0.0	0.0	0.00	0.05	57.7	
8 T1	783	23.2	0.244	0.0	LOS A	0.0	0.0	0.00	0.03	59.6	
Approach	820	22.2	0.244	0.3	NA	0.0	0.0	0.00	0.03	59.5	
All Vehicles	3447	11.7	0.992	8.7	NA	11.8	89.6	0.20	0.18	51.4	

MOVEMENT SUMMARY

Site: I-09 2030 MIMT \& SIMTA OPT 2 PM
Moorebank Avenue / Church Road
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	1227	11.8	0.670	0.9	LOS A	4.5	35.5	0.02	0.02	59.0	
3 R2	111	13.4	0.670	48.2	LOS D	4.5	35.5	1.00	1.05	31.5	
Approach	1337	11.9	0.670	4.8	NA	4.5	35.5	0.10	0.10	54.9	
East: Church Road (E)											
4 L2	427	5.0	1.373	224.3	LOS F	52.2	383.4	1.00	3.40	12.4	
6 R2	1	0.0	0.194	647.2	LOS F	0.5	3.2	1.00	1.00	5.0	
Approach	428	5.0	1.373	225.3	LOS F	52.2	383.4	1.00	3.39	12.3	
North: Moorebank Avenue (N)											
7 L2	14	7.7	0.932	7.3	LOS A	0.0	0.0	0.00	0.01	54.7	
8 T1	1719	6.3	0.932	2.0	LOS A	0.0	0.0	0.00	0.00	56.2	
Approach	1732	6.3	0.932	2.0	NA	0.0	0.0	0.00	0.00	56.1	
All Vehicles	3497	8.3	1.373	30.4	NA	52.2	383.4	0.16	0.46	38.6	

I-10 Intersection of Heathcote Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 2 AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=131$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	271	1.2	0.188	8.5	LOS A	3.8	26.9	0.28	0.63	48.0	
5 T1	2073	5.2	1.260	171.7	LOS F	118.0	863.5	1.00	1.59	15.4	
6 R2	647	3.3	1.268	159.7	LOS F	28.4	204.2	1.00	1.23	16.7	
Approach	2991	4.4	1.268	154.3	LOS F	118.0	863.5	0.94	1.43	16.4	
NorthEast: Nuwarra Road (NE)											
7 L2	416	4.8	0.484	24.5	LOS B	16.5	120.1	0.71	0.78	42.4	
8 T1	275	7.7	0.440	53.4	LOS D	8.0	59.7	0.95	0.76	26.1	
9 R2	508	5.8	1.436	280.3	LOS F	34.0	249.7	1.00	1.43	10.4	
Approach	1199	5.9	1.436	139.6	LOS F	34.0	249.7	0.89	1.05	17.1	
NorthWest: Heathcote Road (NW)											
10 L2	254	11.6	0.334	21.5	LOS B	7.8	60.1	0.70	0.76	42.7	
11 T1	1044	11.2	0.957	51.8	LOS D	40.8	312.9	0.90	0.94	32.1	
12 R2	235	6.3	0.786	75.4	LOS F	8.0	59.1	1.00	0.88	19.9	
Approach	1532	10.5	0.957	50.4	LOS D	40.8	312.9	0.88	0.90	31.4	
SouthWest: Wattle Grove Drive (SW)											
1 L2	639	2.1	0.849	51.7	LOS D	31.8	226.4	0.99	1.15	24.8	
2 T1	543	4.5	0.817	61.7	LOS E	19.6	142.5	1.00	0.94	23.8	
3 R2	263	4.0	1.277	207.3	LOS F	30.6	221.5	1.00	1.37	9.9	
Approach	1445	3.4	1.277	83.8	LOS F	31.8	226.4	0.99	1.11	19.1	
All Vehicles	7167	5.8	1.436	115.4	LOS F	118.0	863.5	0.93	1.19	19.0	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 2 AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive 2030 MIMT \& SIMTA OPT 2 AM PEAK 7:45 am - 8:45 am Signals - Fixed Time Cycle Time = 131 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	B	D	E	G
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	54	67	86	114
Green Time (sec)	48	7	13	22	11
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	54	13	19	28	17
Phase Split	41%	10%	15%	21%	13%

Phase A

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 2 PM

Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=139$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	337	2.5	0.282	15.4	LOS B	8.9	63.6	0.45	0.70	42.4	
5 T1	1331	5.4	0.992	66.0	LOS E	54.7	400.4	0.93	1.05	28.4	
6 R2	469	3.1	1.197	179.1	LOS F	26.2	188.2	1.00	1.22	15.3	
Approach	2137	4.5	1.197	82.9	LOS F	54.7	400.4	0.87	1.03	24.4	
NorthEast: Nuwarra Road (NE)											
7 L2	646	2.8	0.950	74.6	LOS F	44.7	320.2	1.00	1.19	27.0	
8 T1	621	1.4	0.996	88.2	LOS F	27.4	193.9	1.00	1.09	19.1	
$9 \quad \mathrm{R} 2$	556	7.0	1.120	135.5	LOS F	29.2	216.3	1.00	1.13	18.1	
Approach	1823	3.6	1.120	97.8	LOS F	44.7	320.2	1.00	1.14	21.2	
NorthWest: Heathcote Road (NW)											
10 L2	258	6.1	0.232	21.3	LOS B	8.5	62.5	0.53	0.73	43.0	
11 T1	1701	2.7	1.170	143.6	LOS F	91.8	658.0	1.00	1.40	17.6	
12 R2	467	2.0	1.098	128.9	LOS F	23.4	166.5	1.00	1.09	13.6	
Approach	2427	3.0	1.170	127.8	LOS F	91.8	658.0	0.95	1.27	18.1	
SouthWest: Wattle Grove Drive (SW)											
1 L2	305	1.7	0.387	33.9	LOS C	14.1	100.1	0.76	0.85	30.6	
2 T1	361	1.2	0.512	58.0	LOS E	11.3	79.5	0.96	0.79	24.6	
$3 \quad \mathrm{R} 2$	383	1.1	1.422	280.1	LOS F	52.2	369.0	1.00	1.48	7.7	
Approach	1049	1.3	1.422	132.1	LOS F	52.2	369.0	0.92	1.06	13.9	
All Vehicles	7437	3.3	1.422	108.1	LOS F	91.8	658.0	0.93	1.14	19.7	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 2 PM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 139 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E	G
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	63	89	118
Green Time (sec)	57	20	23	15
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	63	26	29	21
Phase Split	45%	19%	21%	15%

I-11 Intersection of Newbridge Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 2 AM
Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Nuwarra Road (S) per veh er											
1 L2	37	8.6	0.752	49.6	LOS D	21.6	154.3	0.90	0.83	37.4	
2 T1	334	1.5	0.752	46.6	LOS D	21.6	154.3	0.90	0.83	31.1	
3 R2	809	6.2	1.171	168.1	LOS F	48.7	358.7	1.00	1.21	17.5	
Approach	1180	4.9	1.171	130.0	LOS F	48.7	358.7	0.97	1.09	20.4	
East: Newbridge Road (E)											
4 L2	340	16.5	0.644	28.4	LOS B	22.6	178.3	0.73	0.78	44.8	
5 T1	1300	11.8	0.644	23.7	LOS B	23.0	178.7	0.68	0.63	51.0	
Approach	1640	12.8	0.644	24.7	LOS B	23.0	178.7	0.69	0.66	49.7	
North: Nuwarra Road (N)											
7 L2	8	0.0	0.978	99.7	LOS F	10.7	75.1	1.00	1.10	23.5	
8 T1	151	0.7	1.223	118.2	LOS F	20.1	145.7	1.00	1.16	20.5	
9 R2	142	5.2	1.223	189.4	LOS F	20.1	145.7	1.00	1.35	16.5	
Approach	301	2.8	1.223	151.3	LOS F	20.1	145.7	1.00	1.25	18.3	
West: Newbridge Road (W)											
10 L2	305	2.1	1.161	139.8	LOS F	93.5	699.2	1.00	1.33	20.6	
$11 \quad$ T1	2307	9.8	1.235	148.3	LOS F	107.6	826.4	1.00	1.46	21.3	
Approach	2612	8.9	1.235	147.3	LOS F	107.6	826.4	1.00	1.44	21.3	
All Vehicles	5733	8.9	1.235	108.9	LOS F	107.6	826.4	0.91	1.14	25.0	

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 2 AM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	72	89
Green Time (sec)	66	11	45
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	72	17	51
Phase Split	51%	12%	36%

MOVEMENT SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Nuwarra Road (S)											
1 L2	58	7.3	0.768	71.0	LOS F	14.7	105.1	1.00	0.89	31.8	
2 T1	155	0.6	0.768	66.6	LOS E	14.7	105.1	1.00	0.89	28.9	
3 R 2	554	6.1	0.991	100.5	LOS F	23.9	176.2	1.00	1.02	24.6	
Approach	767	5.1	0.991	91.4	LOS F	23.9	176.2	1.00	0.98	25.8	
East: Newbridge Road (E)											
4 L2	728	3.8	0.780	18.5	LOS B	32.6	237.3	0.58	0.78	50.1	
5 T1	2231	6.1	0.780	16.4	LOS B	39.8	295.3	0.65	0.64	55.5	
Approach	2959	5.5	0.780	17.0	LOS B	39.8	295.3	0.64	0.67	54.2	
North: Nuwarra Road (N)											
7 L2	17	0.0	0.844	73.2	LOS F	17.1	120.7	1.00	0.96	29.7	
8 T1	281	1.1	1.055	81.3	LOS F	25.7	182.0	1.00	1.00	26.4	
9 R2	213	1.5	1.055	129.0	LOS F	25.7	182.0	1.00	1.14	22.1	
Approach	511	1.2	1.055	100.9	LOS F	25.7	182.0	1.00	1.06	24.4	
West: Newbridge Road (W)											
10 L2	103	0.0	0.550	21.6	LOS B	17.8	132.3	0.51	0.52	48.4	
11 T1	1697	8.2	0.625	14.8	LOS B	20.7	156.0	0.51	0.47	56.8	
Approach	1800	7.8	0.625	15.2	LOS B	20.7	156.0	0.51	0.48	56.3	
All Vehicles	6036	5.8	1.055	33.0	LOS C	39.8	295.3	0.67	0.69	44.4	

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	112
Green Time (sec)	78	22	22
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	28	28
Phase Split	60%	20%	20%

I-12 Intersection of Newbridge Road and Governor Macquarie Drive

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 2 AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)											
1 L2	14	0.0	0.867	78.5	LOS F	15.6	110.4	1.00	0.98	25.2	
2 T1	197	1.0	0.867	74.1	LOS F	15.6	110.4	1.00	0.98	24.9	
3 R2	684	1.2	1.177	166.5	LOS F	36.9	260.6	1.00	1.25	19.6	
Approach	895	1.1	1.177	144.8	LOS F	36.9	260.6	1.00	1.19	20.4	
East: Newbridge Road (E)											
4 L2	230	3.0	0.168	7.7	LOS A	1.9	13.9	0.18	0.63	58.2	
5 T1	1491	11.3	0.437	14.0	LOS A	17.0	131.5	0.55	0.50	59.8	
6 R2	649	9.9	0.964	91.3	LOS F	26.2	198.7	1.00	0.98	32.2	
Approach	2370	10.1	0.964	34.6	LOS C	26.2	198.7	0.64	0.64	48.1	
North: Governor Macquarie Drive (N)											
7 L2	727	7.8	0.689	52.1	LOS D	21.9	163.5	0.94	0.85	40.3	
8 T1	128	2.3	0.518	63.9	LOS E	8.3	59.5	0.98	0.79	27.0	
9 R2	179	31.8	1.034	117.9	LOS F	16.5	146.8	1.00	1.07	22.7	
Approach	1034	11.3	1.034	65.0	LOS E	21.9	163.5	0.96	0.88	35.1	
West: Newbridge Road (W)											
10 L2	132	29.9	1.225	165.5	LOS F	120.8	928.0	1.00	1.46	18.7	
11 T1	3009	7.4	1.225	158.2	LOS F	124.0	931.9	1.00	1.49	24.0	
12 R2	5	20.0	0.046	33.1	LOS C	0.2	1.8	0.60	0.68	37.8	
Approach	3147	8.4	1.225	158.2	LOS F	124.0	931.9	1.00	1.48	23.8	
All Vehicles	7445	8.5	1.225	104.3	LOS F	124.0	931.9	0.88	1.10	29.5	

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 2 AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E	G1
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	66	88	112
Green Time (sec)	60	16	18	22
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	66	22	24	28
Phase Split	47%	16%	17%	20%

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)											
1 L2	11	0.0	0.530	70.2	LOS E	6.8	49.8	0.99	0.78	26.9	
2 T1	92	5.4	0.530	66.1	LOS E	6.8	49.8	0.99	0.78	26.5	
3 R2	257	0.8	0.609	69.8	LOS E	8.6	60.6	1.00	0.80	32.6	
Approach	360	1.9	0.609	68.9	LOS E	8.6	60.6	1.00	0.80	31.1	
East: Newbridge Road (E)											
4 L2	654	1.4	0.461	9.4	LOS A	7.6	53.7	0.28	0.69	57.1	
5 T1	2764	4.9	0.831	28.5	LOS C	51.9	380.6	0.76	0.77	52.0	
6 R2	707	10.3	1.052	126.4	LOS F	33.5	255.2	1.00	1.06	26.9	
Approach	4125	5.3	1.052	42.3	LOS C	51.9	380.6	0.72	0.80	45.1	
North: Governor Macquarie Drive (N)											
7 L2	583	7.9	0.440	46.3	LOS D	15.7	117.1	0.85	0.81	42.1	
8 T1	298	1.7	1.003	99.9	LOS F	25.1	177.9	1.00	1.09	20.9	
9 R2	305	35.9	1.602	360.0	LOS F	46.6	428.5	1.00	1.47	9.9	
Approach	1186	13.5	1.602	140.5	LOS F	46.6	428.5	0.93	1.05	21.9	
West: Newbridge Road (W)											
10 L2	175	15.1	0.865	46.4	LOS D	45.9	344.9	0.94	0.89	39.0	
11 T1	2086	5.6	0.865	38.4	LOS C	46.6	343.9	0.92	0.87	47.6	
12 R 2	4	0.0	0.070	54.5	LOS D	0.2	1.7	0.80	0.69	30.3	
Approach	2265	6.4	0.865	39.0	LOS C	46.6	344.9	0.92	0.87	47.0	
All Vehicles	7935	6.7	1.602	57.2	LOS E	51.9	428.5	0.82	0.86	39.4	

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 2 PM

Newbridge Road / Governor Macquarie Drive

2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E	G1
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	64	86	107
Green Time (sec)	58	16	15	27
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	64	22	21	33
Phase Split	46%	16%	15%	24%

I-13 Intersection of Moorebank Avenue and M5 Motorway

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 2 AM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 74 seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Deman Total veh/h	$\begin{array}{r} \text { Flows } \\ \text { HV } \\ \% \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Bac Vehicles veh	Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Moorebank Avenue (S)										
1 L2	398	36.3	0.439	10.4	LOS A	5.1	54.4	0.49	0.70	48.6
2 T1	716	10.5	0.878	39.8	LOS C	15.2	121.1	1.00	1.05	34.9
3 R2	319	6.3	0.463	33.5	LOS C	5.7	43.2	0.91	0.79	36.6
Approach	1434	16.7	0.878	30.2	LOS C	15.2	121.1	0.84	0.90	38.3
East: M5 Motorway on\&off ramp (E)										
4 L2	323	14.5	0.428	11.8	LOS A	4.7	39.0	0.62	0.74	48.4
6 R2	237	6.2	0.246	28.8	LOS C	3.4	25.1	0.82	0.76	40.4
Approach	559	11.0	0.428	19.0	LOS B	4.7	39.0	0.71	0.75	44.4
North: Moorebank Avenue (N)										
7 L2	51	47.9	0.050	7.9	LOS A	0.4	3.5	0.29	0.60	51.1
8 T1	253	19.7	0.331	26.4	LOS B	3.9	34.2	0.88	0.70	40.6
9 R2	454	25.5	0.772	37.8	LOS C	10.0	85.1	0.97	0.87	36.3
Approach	757	25.1	0.772	32.0	LOS C	10.0	85.1	0.90	0.80	38.3
West: M5 Motorway on\&off ramp (W)										
10 L2	1722	7.5	0.977	7.8	LOS A	0.0	0.0	0.00	0.50	51.6
12 R2	680	19.4	0.824	40.1	LOS C	13.5	121.9	1.00	0.97	34.2
Approach	2403	10.8	0.977	17.0	LOS B	13.5	121.9	0.28	0.63	45.6
All Vehicles	5153	14.6	0.977	23.1	LOS B	15.2	121.9	0.57	0.74	42.2

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 2 AM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=74$ seconds (User-Given Phase Times)

Phase Timing Results	A	E	F
Phase	Yes	No	No
Reference Phase	0	24	51
Phase Change Time (sec)	17	20	16
Green Time (sec)	4	4	4
Yellow Time (sec)	3	3	3
All-Red Time (sec)	24	27	23
Phase Time (sec)	32%	36%	31%
Phase Split			

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 2 PM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=94$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
1 L2	639	17.8	0.959	61.4	LOS E	38.9	347.0	1.00	1.12	28.1	
2 T1	248	14.6	0.968	72.9	LOS F	7.6	63.5	1.00	1.15	25.9	
3 R2	411	9.9	0.372	29.3	LOS C	7.7	61.5	0.77	0.78	38.3	
Approach	1298	14.7	0.968	53.4	LOS D	38.9	347.0	0.93	1.01	30.1	
East: M5 Motorway on\&off ramp (E)											
4 L2	460	7.3	0.572	17.0	LOS B	9.3	71.0	0.70	0.81	45.2	
6 R2	97	21.7	0.177	42.7	LOS D	2.0	16.2	0.89	0.73	34.9	
Approach	557	9.8	0.572	21.5	LOS B	9.3	71.0	0.74	0.80	42.8	
North: Moorebank Avenue (N)											
7 L2	139	6.1	0.116	7.7	LOS A	1.3	9.3	0.29	0.63	52.4	
8 T1	757	7.5	0.846	44.1	LOS D	18.9	144.8	1.00	1.01	33.3	
9 R2	1488	7.0	0.920	43.0	LOS D	34.3	254.6	1.00	1.06	34.8	
Approach	2384	7.1	0.920	41.3	LOS C	34.3	254.6	0.96	1.02	35.0	
West: M5 Motorway on\&off ramp (W)											
10 L2	620	13.8	0.367	5.8	LOS A	0.0	0.0	0.00	0.52	54.4	
12 R2	365	32.7	0.792	53.0	LOS D	9.1	95.7	1.00	0.94	30.0	
Approach	985	20.8	0.792	23.3	LOS B	9.1	95.7	0.37	0.68	42.5	
All Vehicles	5223	11.9	0.968	38.8	LOS C	38.9	347.0	0.82	0.93	35.5	

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 2 PM

Moorebank Avenue / the M5 Motorway

2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 94 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C	E	F
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	14	30	53
Green Time (sec)	7	9	16	34
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	3	3	3	3
Phase Time (sec)	14	16	23	41
Phase Split	15%	17%	24%	44%

I-14 Intersection of M5 Motorway and Hume Highway

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 2 AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=159$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	4256	4.6	1.027	59.4	LOS E	152.3	1108.5	1.00	1.21	33.2	
3 R2	680	4.0	0.936	50.9	LOS D	20.3	146.7	1.00	0.95	35.4	
Approach	4936	4.5	1.027	58.3	LOS E	152.3	1108.5	1.00	1.17	33.5	
East: M5 Motorway on\&off-ramp (E)											
4 L2	338	5.9	0.134	30.5	LOS C	4.8	35.4	0.60	0.71	41.9	
6 R2	1211	6.4	1.287	357.4	LOS F	74.2	558.7	1.00	1.54	7.2	
Approach	1549	6.3	1.287	286.1	LOS F	74.2	558.7	0.91	1.36	9.6	
North: Hume Highway (N)											
7 L2	780	9.5	0.653	14.0	LOS A	25.0	194.9	0.53	0.74	45.7	
8 T1	1208	6.7	0.490	28.5	LOS B	17.8	131.7	0.62	0.55	43.3	
Approach	1988	7.8	0.653	22.8	LOS B	25.0	194.9	0.59	0.62	44.0	
All Vehicles	8472	5.6	1.287	91.6	LOS F	152.3	1108.5	0.89	1.08	25.5	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 2 AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	B	C	D
Reference Phase	No	No	No	Yes
Phase Change Time (sec)	20	97	123	0
Green Time (sec)	70	19	29	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	3	3	3	3
Phase Time (sec)	77	26	36	20
Phase Split	48%	16%	23%	13%

Phase A

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 2 PM

M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=159$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	2555	3.9	0.624	2.2	LOS A	7.1	51.1	0.12	0.11	58.3	
3 R 2	401	1.8	1.023	122.1	LOS F	20.4	145.1	1.00	1.07	22.6	
Approach	2956	3.6	1.023	18.4	LOS B	20.4	145.1	0.24	0.24	48.0	
East: M5 Motorway on\&off-ramp (E)											
4 L2	1513	3.3	1.138	245.4	LOS F	98.0	705.7	1.00	1.33	13.8	
6 R2	1265	5.7	1.276	348.8	LOS F	78.1	583.7	1.00	1.52	7.4	
Approach	2777	4.4	1.276	292.5	LOS F	98.0	705.7	1.00	1.42	10.5	
North: Hume Highway (N)											
7 L2	884	5.7	0.697	14.5	LOS B	27.6	208.5	0.61	0.82	45.6	
8 T1	2837	2.4	0.870	20.5	LOS B	51.6	368.7	0.78	0.73	47.0	
Approach	3721	3.2	0.870	19.1	LOS B	51.6	368.7	0.74	0.75	46.7	
All Vehicles	9454	3.7	1.276	99.2	LOS F	98.0	705.7	0.66	0.79	24.4	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 2 PM

M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	97	121
Green Time (sec)	90	17	31
Yellow Time (sec)	4	4	4
All-Red Time (sec)	3	3	3
Phase Time (sec)	97	24	38
Phase Split	61%	15%	24%

Phase A

I-15 Intersection of Cambridge Avenue and Canterbury Road MOVEMENT SUMMARY

Site: I-15 2030 MIMT \& SIMTA OPT 2 AM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 2 AM PEAK 7:45 am - 8:45 am
Roundabout

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Canterbury Road (S)											
1 L2	449	3.5	0.503	6.1	LOS A	3.2	22.9	0.60	0.69	52.9	
2 T1	8	0.0	0.888	10.5	LOS A	16.4	117.0	0.95	0.95	49.1	
3 R 2	1095	1.9	0.888	15.9	LOS B	16.4	117.0	0.95	0.95	49.2	
Approach	1553	2.4	0.888	13.0	LOS A	16.4	117.0	0.85	0.87	50.1	
East: Cambridge Avenue (E)											
4 L2	307	3.1	0.163	3.5	LOS A	0.0	0.0	0.00	0.43	56.5	
5 T1	81	7.8	0.082	5.1	LOS A	0.5	3.4	0.50	0.56	53.5	
6 R2	54	9.8	0.082	10.4	LOS A	0.5	3.4	0.49	0.59	53.7	
Approach	442	4.8	0.163	4.6	LOS A	0.5	3.4	0.15	0.47	55.6	
North: Railway Parade (N)											
7 L2	338	0.6	0.871	55.5	LOS D	13.3	93.7	1.00	1.54	31.3	
8 T1	3	0.0	0.611	29.4	LOS C	4.8	33.9	0.99	1.15	39.5	
9 R2	168	1.9	0.611	34.8	LOS C	4.8	33.9	0.99	1.15	37.7	
Approach	509	1.0	0.871	48.5	LOS D	13.3	93.7	1.00	1.41	33.1	
West: Glenfield Road (W)											
10 L2	399	6.3	1.480	470.5	LOS F	129.3	956.8	1.00	4.85	6.1	
11 T1	222	7.6	1.480	471.2	LOS F	129.3	956.8	1.00	4.68	6.1	
12 R2	367	6.9	1.480	478.2	LOS F	104.4	774.9	1.00	4.34	6.3	
Approach	988	6.8	1.480	473.5	LOS F	129.3	956.8	1.00	4.62	6.2	
All Vehicles	3493	3.7	1.480	147.5	LOS F	129.3	956.8	0.83	1.96	17.1	

MOVEMENT SUMMARY

θ Site: I-15 2030 MIMT \& SIMTA OPT 2 PM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 2 PM PEAK 4:30 pm - 5:30 pm
Roundabout

Movement Performance - Vehicles										
Mov ID ODMo v	Deman Total veh/h	lows HV \%	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Canterbury Road (S)										
1 L2	338	2.2	0.493	9.4	LOS A	3.3	23.3	0.81	0.95	50.5
2 T1	6	0.0	0.417	7.6	LOS A	2.7	18.8	0.78	0.94	51.0
3 R2	334	1.3	0.417	13.0	LOS A	2.7	18.8	0.78	0.94	51.2
Approach	678	1.7	0.493	11.1	LOS A	3.3	23.3	0.79	0.94	50.9
East: Cambridge Avenue (E)										
4 L2	1232	2.1	0.649	3.6	LOS A	0.0	0.0	0.00	0.43	56.3
5 T1	315	7.4	0.486	7.4	LOS A	4.1	29.4	0.77	0.78	51.9
6 R2	356	0.9	0.486	12.7	LOS A	4.1	29.4	0.83	0.82	52.0
Approach	1902	2.7	0.649	5.9	LOS A	4.1	29.4	0.28	0.56	54.7
North: Railway Parade (N)										
7 L2	125	1.7	0.192	7.9	LOS A	1.0	6.9	0.69	0.80	52.8
8 T1	0	0.0	0.000	0.0	NA	0.0	0.0	0.00	0.00	0.0
9 R2	240	8.3	0.295	12.7	LOS A	1.7	12.7	0.73	0.86	50.0
Approach	365	6.1	0.295	11.0	LOS A	1.7	12.7	0.71	0.84	51.0
West: Glenfield Road (W)										
10 L2	271	4.7	0.442	9.0	LOS A	3.0	21.7	0.78	0.87	50.8
11 T1	54	0.0	0.442	8.8	LOS A	3.0	21.7	0.78	0.87	52.7
12 R2	451	3.7	0.513	14.2	LOS A	4.1	29.9	0.81	0.93	49.0
Approach	775	3.8	0.513	12.0	LOS A	4.1	29.9	0.80	0.90	49.9
All Vehicles	3720	3.1	0.649	8.6	LOS A	4.1	29.9	0.53	0.73	52.6

6. On the wider road network - 2030 cumulative scenario 3

I-01 Intersection of the Hume Highway and Orange Grove Road

MOVEMENT SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand Total	Flows HV	Deg. Satn	Average Delay	Level of Service	95\% Bac Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Average Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
NorthEast: Hume Highway (NE)										
25 T1	991	10.8	0.709	24.9	LOS B	20.7	158.2	0.85	0.78	35.4
26 R2	389	10.0	0.907	85.9	LOS F	16.8	127.3	1.00	0.92	23.9
Approach	1381	10.6	0.907	42.1	LOS C	20.7	158.2	0.90	0.82	30.0
NorthWest: Orange Grove Road (NW)										
27 L2	602	6.5	0.712	18.8	LOS B	19.5	144.4	0.54	0.81	44.8
29 R2	1371	8.4	1.019	107.8	LOS F	45.1	343.5	1.00	1.03	18.2
Approach	1973	7.8	1.073	80.7	LOS F	45.1	343.5	0.86	0.96	22.8
SouthWest: Hume Highway (SW)										
30 L2	1281	8.6	0.462	11.7	LOS A	14.5	110.4	0.34	0.70	50.1
31 T1	2186	4.9	0.805	22.9	LOS B	39.5	287.9	0.71	0.65	40.2
Approach	3468	6.3	0.805	18.7	LOS B	39.5	287.9	0.57	0.67	44.0
All Vehicles	6821	7.6	1.073	41.4	LOS C	45.1	343.5	0.72	0.78	31.4

PHASING SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	108
Green Time (sec)	77	17	36
Yellow Time (sec)	5	4	5
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	23	43
Phase Split	56%	15%	29%

MOVEMENT SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 3 PM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
NorthEast: Hume Highway (NE)											
25 T1	1766	3.5	0.921	42.1	LOS C	48.3	348.2	0.91	0.96	27.6	
26 R2	816	2.8	0.958	61.5	LOS E	22.8	163.7	1.00	1.00	29.2	
Approach	2581	3.3	0.958	48.3	LOS D	48.3	348.2	0.94	0.97	28.2	
NorthWest: Orange Grove Road (NW)											
27 L2	391	4.3	0.393	14.2	LOS A	8.3	60.0	0.33	0.66	48.0	
29 R2	1383	4.9	1.085	118.6	LOS F	50.0	369.5	1.00	1.07	17.1	
Approach	1774	4.8	1.085	95.6	LOS F	50.0	369.5	0.85	0.98	20.3	
SouthWest: Hume Highway (SW)											
30 L2	1330	4.7	0.791	19.8	LOS B	21.2	156.6	0.80	0.84	44.7	
31 T1	1123	5.3	1.009	90.7	LOS F	38.2	280.2	1.00	1.11	17.7	
Approach	2453	5.0	1.009	52.2	LOS D	38.2	280.2	0.89	0.97	28.1	
All Vehicles	6809	4.3	1.085	62.0	LOS E	50.0	369.5	0.90	0.97	25.3	

PHASING SUMMARY

Site: I-01 2030 MIMT \& SIMTA OPT 3 PM
Hume Highway / Orange Grove Road
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase times specified by the user
Sequence: TCS 866 PM - Modified
Movement Class: All Movement Classes
Input Sequence: A, B, C, D
Output Sequence: A, B, C, D
Phase Timing Results

Phase	A	B	C	D
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	53	80	124
Green Time (sec)	47	20	38	19
Yellow Time (sec)	5	4	5	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	54	26	45	25
Phase Split	36%	17%	30%	17%

I-02 Intersection of the Hume Highway and Elizabeth Drive

MOVEMENT SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S) per pren											
1 L2	137	5.4	0.155	22.6	LOS B	3.7	27.3	0.40	0.68	36.5	
2 T1	2385	7.6	0.969	61.6	LOS E	68.1	512.0	0.99	1.03	19.6	
Approach	2522	7.5	0.989	59.5	LOS E	68.1	512.0	0.95	1.01	20.2	
East: Elizabeth Drive (E)											
4 L2	39	5.4	0.426	59.6	LOS E	10.5	77.4	0.91	0.82	18.6	
5 T1	502	5.7	0.426	55.8	LOS D	11.9	87.2	0.90	0.82	23.7	
6 R2	156	2.7	0.754	78.1	LOS F	11.7	83.5	1.00	0.87	14.8	
Approach	697	5.0	0.754	61.0	LOS E	11.9	87.2	0.92	0.83	21.1	
North: Hume Highway (N)											
7 L2	82	2.6	0.666	26.1	LOS B	25.3	192.5	0.62	0.59	31.4	
8 T1	1813	9.9	0.666	20.0	LOS B	25.7	196.8	0.61	0.56	35.8	
9 R2	353	9.6	1.170	171.2	LOS F	19.8	149.6	1.00	1.15	10.5	
Approach	2247	9.5	1.170	44.0	LOS D	25.7	196.8	0.67	0.66	24.7	
West: Elizabeth Drive (W)											
10 L2	627	5.2	1.011	93.3	LOS F	57.3	419.3	1.00	1.01	16.3	
11 T1	1089	3.0	1.050	107.6	LOS F	52.2	375.0	1.00	1.18	14.2	
12 R2	522	7.0	1.305	231.6	LOS F	33.9	252.9	1.00	1.27	8.2	
Approach	2239	4.5	1.305	132.5	LOS F	57.3	419.3	1.00	1.15	12.4	
All Vehicles	7705	7.0	1.305	76.3	LOS F	68.1	512.0	0.88	0.93	17.7	

PHASING SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)

MOVEMENT SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 3 PM
Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo	Deman	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Hume Highway (S)										
1 L2	326	5.2	0.481	39.9	LOS C	15.4	113.2	0.70	0.78	28.3
2 T1	1587	6.3	0.956	71.7	LOS F	46.4	345.9	0.98	1.03	17.7
Approach	1913	6.1	0.956	66.3	LOS E	46.4	345.9	0.93	0.99	19.1
East: Elizabeth Drive (E)										
4 L2	128	0.8	0.984	98.9	LOS F	31.7	225.4	1.00	1.08	12.9
5 T1	1082	2.3	0.984	94.6	LOS F	40.3	287.5	1.00	1.10	16.3
6 R2	172	0.0	1.066	131.4	LOS F	17.1	119.5	1.00	1.12	9.9
Approach	1382	1.9	1.066	99.6	LOS F	40.3	287.5	1.00	1.10	15.0
North: Hume Highway (N)										
7 L2	66	4.8	0.874	25.4	LOS B	43.2	315.6	0.74	0.72	32.1
8 T1	2473	4.0	0.874	19.5	LOS B	44.0	320.9	0.74	0.71	36.2
9 R2	961	3.0	0.917	75.8	LOS F	37.4	268.2	1.00	0.94	19.6
Approach	3501	3.7	0.917	35.1	LOS C	44.0	320.9	0.81	0.78	28.6
West: Elizabeth Drive (W)										
10 L2	325	5.8	0.434	34.2	LOS C	13.6	100.2	0.62	0.76	29.6
11 T1	529	4.4	0.698	61.8	LOS E	17.6	127.6	0.96	0.82	20.9
12 R2	309	2.4	0.978	105.6	LOS F	13.7	98.2	1.00	1.00	15.4
Approach	1164	4.2	0.978	65.7	LOS E	17.6	127.6	0.88	0.85	20.6
All Vehicles	7960	4.1	1.066	58.2	LOS E	46.4	345.9	0.88	0.90	21.4

PHASING SUMMARY

Site: I-02 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Elizabeth Drive
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	D	F	A	E
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	53	72	108
Green Time (sec)	47	13	30	36
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	53	19	36	42
Phase Split	35%	13%	24%	28%

I-03 Intersection of the Hume Highway and Memorial Avenue

MOVEMENT SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	157	1.3	0.976	67.6	LOS E	68.6	512.6	1.00	1.06	27.0	
2 T1	2130	8.4	0.976	59.3	LOS E	69.9	529.1	0.94	1.01	25.3	
3 R2	267	0.0	1.137	158.3	LOS F	29.3	204.9	1.00	1.12	12.4	
Approach	2554	7.1	1.137	70.1	LOS E	69.9	529.1	0.95	1.03	23.1	
East: Memorial Avenue (E)											
4 L2	29	28.6	1.264	214.3	LOS F	21.6	165.9	1.00	1.33	9.8	
5 T1	164	7.7	1.264	209.5	LOS F	21.6	165.9	1.00	1.33	9.6	
6 R2	134	18.1	1.264	214.6	LOS F	19.4	155.3	1.00	1.32	6.9	
Approach	327	13.8	1.264	212.0	LOS F	21.6	165.9	1.00	1.33	8.6	
North: Hume Highway (N)											
7 L2	121	6.1	0.103	12.4	LOS A	2.6	19.4	0.36	0.64	39.4	
8 T1	1826	12.3	0.784	29.0	LOS C	34.8	272.3	0.77	0.69	36.0	
9 R2	101	3.1	0.439	72.0	LOS F	7.0	50.1	0.97	0.79	21.4	
Approach	2048	11.5	0.784	30.1	LOS C	34.8	272.3	0.75	0.69	34.9	
West: Memorial Avenue (W)											
10 L2	128	3.3	1.187	160.9	LOS F	36.6	261.2	1.00	1.28	12.5	
11 T1	460	1.6	1.187	163.7	LOS F	46.9	334.6	1.00	1.31	11.6	
12 R2	169	3.1	1.187	175.5	LOS F	46.9	334.6	1.00	1.35	14.5	
Approach	757	2.2	1.187	165.9	LOS F	46.9	334.6	1.00	1.31	12.4	
All Vehicles	5687	8.4	1.264	76.7	LOS F	69.9	529.1	0.89	0.96	21.3	

PHASING SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 3 AM

Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Phase Timing Results	A	D	E	F
Phase	Yes	No	No	No
Reference Phase	0	75	108	125
Phase Change Time (sec)	69	27	11	19
Green Time (sec)	4	4	4	4
Yellow Time (sec)	2	2	2	2
All-Red Time (sec)	75	33	17	25
Phase Time (sec)	50%	22%	11%	17%
Phase Split				

Phase A Phase D

MOVEMENT SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	124	0.8	0.848	49.7	LOS D	40.0	295.8	0.93	0.90	31.4	
2 T1	1699	6.7	0.848	41.5	LOS C	40.8	306.0	0.89	0.84	30.6	
3 R2	116	0.0	0.779	84.4	LOS F	8.9	62.5	1.00	0.86	19.4	
Approach	1939	6.0	0.848	44.6	LOS D	40.8	306.0	0.90	0.85	29.7	
East: Memorial Avenue (E)											
4 L2	55	0.0	1.228	195.7	LOS F	34.9	247.9	1.00	1.40	10.7	
5 T1	289	2.2	1.228	191.2	LOS F	34.9	247.9	1.00	1.39	10.3	
6 R2	211	6.0	1.228	196.2	LOS F	32.3	235.9	1.00	1.32	7.5	
Approach	555	3.4	1.228	193.5	LOS F	34.9	247.9	1.00	1.37	9.3	
North: Hume Highway (N)											
7 L2	152	2.8	0.090	8.4	LOS A	2.0	14.7	0.24	0.61	43.5	
8 T1	2954	3.7	0.937	19.5	LOS B	63.5	461.8	0.68	0.68	41.5	
$9 \quad \mathrm{R} 2$	214	2.0	0.729	42.6	LOS D	9.2	65.2	1.00	0.83	28.2	
Approach	3320	3.6	0.937	20.5	LOS B	63.5	461.8	0.68	0.69	40.3	
West: Memorial Avenue (W)											
10 L2	82	1.3	0.947	89.9	LOS F	17.2	121.7	1.00	1.08	18.9	
11 T1	209	1.0	0.947	86.8	LOS F	21.4	150.2	1.00	1.06	18.0	
12 R2	171	0.0	0.947	93.9	LOS F	21.4	150.2	1.00	1.03	21.9	
Approach	462	0.7	0.947	90.0	LOS F	21.4	150.2	1.00	1.05	19.7	
All Vehicles	6276	4.1	1.228	48.4	LOS D	63.5	461.8	0.80	0.82	27.8	

PHASING SUMMARY

Site: I-03 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Memorial Avenue
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	C	D	E	F
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	67	81	108	132
Green Time (sec)	61	8	21	18	12
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	67	14	27	24	18
Phase Split	45%	9%	18%	16%	12%

I-04 Intersection of the Hume Highway and Hoxton Park Drive

MOVEMENT SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Hoxton Park Road / Macquarie Street 2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S) per											
1 L2	109	12.9	0.096	8.8	LOS A	0.9	7.2	0.13	0.57	50.6	
2 T1	2154	6.3	0.848	31.1	LOS C	43.9	326.7	0.83	0.77	38.1	
3 R2	1213	1.9	1.038	98.4	LOS F	46.4	330.1	1.00	1.09	17.7	
Approach	3475	5.0	1.038	53.9	LOS D	46.4	330.1	0.87	0.88	28.7	
East: Macquarie Street (E)											
4 L2	361	5.8	0.230	21.3	LOS B	5.5	40.4	0.66	0.73	39.0	
5 T1	545	4.6	1.080	130.0	LOS F	27.8	202.5	1.00	1.19	16.2	
Approach	906	5.1	1.080	86.7	LOS F	27.8	202.5	0.86	1.01	20.6	
North: Hume Highway (N)											
7 L2	236	15.6	1.045	61.2	LOS E	47.8	371.9	1.00	1.02	25.9	
8 T1	1543	9.6	1.045	94.3	LOS F	60.0	460.7	1.00	1.13	21.8	
9 R2	246	19.2	1.257	211.1	LOS F	30.8	251.3	1.00	1.27	13.2	
Approach	2025	11.5	1.257	104.7	LOS F	60.0	460.7	1.00	1.14	20.3	
West: Hoxton Park Road (W)											
10 L2	345	18.0	0.583	47.3	LOS D	20.3	164.2	0.87	0.83	32.5	
11 T1	1372	4.8	1.132	165.1	LOS F	55.7	406.4	1.00	1.34	13.5	
12 R2	395	4.6	1.158	143.8	LOS F	24.1	176.3	1.00	1.11	16.6	
Approach	2112	6.9	1.158	141.9	LOS F	55.7	406.4	0.98	1.21	15.8	
All Vehicles	8519	7.0	1.257	91.2	LOS F	60.0	460.7	0.93	1.04	21.3	

PHASING SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 3 AM

Hume Highway / Hoxton Park Road / Macquarie Street 2030 MIMT \& SIMTA Option 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase times specified by the user
Sequence: TCS 405 AM - Modified
Movement Class: All Movement Classes
Input Sequence: A, C, E, D, F
Output Sequence: A, C, E, D, F
Phase Timing Results

Phase	A	C	E	D	F
Reference Phase	Yes	No	No	No	No
Phase Change Time (sec)	0	49	77	100	126
Green Time (sec)	43	22	17	20	18
Yellow Time (sec)	4	4	4	4	4
All-Red Time (sec)	2	2	2	2	2
Phase Time (sec)	49	28	23	26	24
Phase Split	33%	19%	15%	17%	16%

MOVEMENT SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Hoxton Park Road / Macquarie Street
2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
1 L2	203	6.4	0.173	9.6	LOS A	2.1	15.6	0.16	0.59	50.2	
2 T1	1657	6.7	0.664	24.5	LOS B	26.6	199.7	0.65	0.59	41.3	
3 R2	448	1.2	0.934	93.1	LOS F	18.7	132.4	1.00	0.96	18.4	
Approach	2309	5.6	0.934	36.5	LOS C	26.6	199.7	0.68	0.66	35.0	
East: Macquarie Street (E)											
4 L2	785	1.5	1.024	141.2	LOS F	35.3	250.1	0.98	1.03	13.6	
5 T1	706	3.3	1.087	125.9	LOS F	35.4	254.8	1.00	1.19	16.5	
Approach	1492	2.3	1.087	133.9	LOS F	35.4	254.8	0.99	1.10	14.9	
North: Hume Highway (N)											
7 L2	101	5.2	0.965	33.4	LOS C	74.2	538.7	0.94	0.98	36.4	
8 T1	2837	3.5	0.965	28.2	LOS B	75.5	548.5	0.83	0.86	39.3	
9 R2	283	6.3	1.406	276.3	LOS F	39.8	293.6	1.00	1.37	10.6	
Approach	3222	3.8	1.406	50.1	LOS D	75.5	548.5	0.85	0.91	31.1	
West: Hoxton Park Road (W)											
10 L2	252	4.2	0.395	44.4	LOS D	13.7	99.2	0.80	0.80	33.6	
11 T1	717	4.3	0.439	46.6	LOS D	14.2	102.8	0.87	0.73	30.4	
12 R2	387	3.4	1.256	176.1	LOS F	26.0	189.3	1.00	1.18	14.3	
Approach	1355	4.0	1.256	83.2	LOS F	26.0	189.3	0.89	0.87	23.0	
All Vehicles	8378	4.1	1.406	66.6	LOS E	75.5	548.5	0.83	0.87	26.1	

PHASING SUMMARY

Site: I-04 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Hoxton Park Road / Macquarie Street 2030 MIMT \& SIMTA Option 3 PM PEAK 4:30 pm - 5:30 pm Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	E	D	F
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	78	98	127
Green Time (sec)	72	14	23	17
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	78	20	29	23
Phase Split	52%	13%	19%	15%

Phase A

I-05 Intersection of the Hume Highway and Reilly Street

MOVEMENT SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Hignway (S)											
1 L2	80	2.6	0.944	32.6	LOS C	72.7	531.8	0.86	0.88	35.9	
2 T1	3175	4.6	0.944	26.3	LOS B	72.7	531.8	0.79	0.82	35.6	
3 R2	14	7.7	0.117	24.4	LOS B	0.5	3.8	0.51	0.68	36.1	
Approach	3269	4.5	0.944	26.5	LOS B	72.7	531.8	0.79	0.82	35.6	
East: Congressional Drive (E)											
4 L2	49	2.1	0.263	59.1	LOS E	5.9	42.6	0.89	0.74	24.5	
5 T1	46	4.5	0.263	54.5	LOS D	5.9	42.6	0.89	0.74	24.0	
6 R2	91	4.7	0.428	67.2	LOS E	6.1	44.6	0.95	0.79	18.7	
Approach	186	4.0	0.428	61.9	LOS E	6.1	44.6	0.92	0.76	21.6	
North: Hume Hignway (N)											
7 L2	32	3.3	0.579	18.3	LOS B	23.4	177.9	0.54	0.58	39.1	
8 T1	1936	8.8	0.579	11.4	LOS A	26.6	202.5	0.51	0.50	46.3	
9 R2	99	1.1	0.772	60.4	LOS E	6.1	42.9	1.00	0.93	22.5	
Approach	2067	8.3	0.772	13.8	LOS A	26.6	202.5	0.54	0.52	43.9	
West: Reilly Street (W)											
10 L2	120	3.5	0.274	50.3	LOS D	7.6	55.2	0.83	0.76	24.5	
11 T1	14	7.7	0.274	45.7	LOS D	7.6	55.2	0.83	0.76	25.6	
12 R2	239	1.3	1.049	131.2	LOS F	24.1	171.0	1.00	1.11	15.9	
Approach	373	2.3	1.049	102.1	LOS F	24.1	171.0	0.94	0.98	17.9	
All Vehicles	5895	5.7	1.049	27.9	LOS B	72.7	531.8	0.72	0.72	34.6	

PHASING SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 3 AM
Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 150 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E2
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	100	138
Green Time (sec)	94	32	6
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	100	38	12
Phase Split	67%	25%	8%

MOVEMENT SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 3 PM

Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Hume Hignway (S)										
1 L2	228	0.5	0.689	20.0	LOS B	27.9	204.1	0.55	0.58	41.6
2 T1	2123	5.9	0.689	12.0	LOS A	27.9	204.1	0.48	0.46	45.4
3 R2	21	5.0	0.391	30.3	LOS C	1.0	7.5	0.62	0.73	33.4
Approach	2372	5.3	0.689	12.9	LOS A	27.9	204.1	0.49	0.48	44.8
East: Congressional Drive (E)										
4 L2	42	2.5	0.205	61.9	LOS E	4.2	29.6	0.90	0.73	23.8
5 T1	24	0.0	0.205	57.3	LOS E	4.2	29.6	0.90	0.73	23.3
6 R2	52	0.0	0.236	65.6	LOS E	3.4	23.6	0.92	0.75	19.1
Approach	118	0.9	0.236	62.6	LOS E	4.2	29.6	0.91	0.74	21.7
North: Hume Hignway (N)										
7 L2	67	0.0	0.986	31.4	LOS C	87.9	634.4	0.77	0.85	31.0
8 T1	3695	3.0	0.986	26.7	LOS B	87.9	634.4	0.59	0.67	35.4
$9 \quad \mathrm{R} 2$	178	1.2	0.819	61.6	LOS E	11.8	83.2	1.00	1.02	22.3
Approach	3940	2.9	0.986	28.4	LOS B	87.9	634.4	0.61	0.69	34.4
West: Reilly Street (W)										
10 L2	65	0.0	0.235	56.1	LOS D	5.8	40.6	0.86	0.74	23.5
11 T1	32	0.0	0.235	51.6	LOS D	5.8	40.6	0.86	0.74	24.5
12 R2	261	1.6	1.120	156.3	LOS F	28.6	203.3	1.00	1.17	14.1
Approach	358	1.2	1.120	128.8	LOS F	28.6	203.3	0.96	1.06	15.5
All Vehicles	6788	3.6	1.120	28.9	LOS C	87.9	634.4	0.59	0.64	34.2

PHASING SUMMARY

Site: I-05 2030 MIMT \& SIMTA OPT 3 PM
Hume Highway / Reilly Street
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=150$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E2
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	98	133
Green Time (sec)	92	29	11
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	98	35	17
Phase Split	65%	23%	11%

Phase A

I-06 Intersection of Newbridge Road and Moorebank Avenue

MOVEMENT SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo v	Demand Flows Total HV veh/h		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
1 L2	1535	3.2				1232	3.2	0.636	19.0	LOS B	13.6	98.2	0.57	0.82	42.3
3 R2	1403	11.5	1128	11.7	0.683	15.2	LOS B	14.4	113.0	0.43	0.69	52.4			
Approach	2938	7.1	2360 N1	7.3	0.683	17.2	LOS B	14.4	113.0	0.50	0.76	47.8			
East: Newbridge Road (E)															
4 L2	737	20.7	737	20.7	0.521	18.6	LOS B	8.4	70.4	0.72	0.80	51.8			
5 T1	965	5.1	965	5.1	1.260	311.5	LOS F	77.3	564.9	1.00	1.91	14.7			
Approach	1702	11.9	1702	11.9	1.260	184.7	LOS F	77.3	564.9	0.88	1.43	19.1			
West: Newbridge Road (W)															
11 T1	1582	6.6	1582	6.6	0.853	12.5	LOS A	31.0	229.6	0.64	0.60	60.8			
12 R2	907	7.3	907	7.3	1.696	683.2	LOS F	114.9	854.8	1.00	2.01	3.0			
Approach	2489	6.8	2489	6.8	1.696	256.9	LOS F	114.9	854.8	0.77	1.11	13.9			
All Vehicles	7129	8.2	6551 N1	8.9	1.696	151.8	LOS F	114.9	854.8	0.70	1.07	19.4			

PHASING SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)
Phase Timing Results

MOVEMENT SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 3 PM
ϕ
Network: 2030 MIMT \& SIMTA OPT 3 PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles															
Mov ID ODMo v	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed			
			Vehicles	Distance											
			veh/h	\%	v/c	sec		veh	m		per veh	km/h			
South: Moorebank Avenue (S)															
1 L2	1034	2.9				912	3.0	0.519	22.6	LOS B	13.7	98.2	0.58	0.75	39.8
3 R2	989	11.0	876	11.4	1.147	190.3	LOS F	16.8	130.6	1.00	1.43	15.8			
Approach	2023	6.8	1788 N1	7.1	1.147	104.8	LOS F	16.8	130.6	0.78	1.08	20.7			
East: Newbridge Road (E)															
4 L2	1271	7.1	1271	7.1	1.106	189.6	LOS F	78.5	590.7	1.00	1.30	15.1			
5 T1	1373	4.8	1373	4.8	0.923	51.1	LOS D	42.7	311.4	1.00	1.04	43.3			
Approach	2643	5.9	2643	5.9	1.106	117.7	LOS F	78.5	590.7	1.00	1.17	25.6			
West: Newbridge Road (W)															
11 T1	1129	4.0	1129	4.0	0.442	9.3	LOS A	14.6	105.8	0.50	0.45	62.9			
12 R2	1120	2.8	1120	2.8	1.200	233.1	LOS F	74.8	536.3	1.00	1.47	8.2			
Approach	2249	3.4	2249	3.4	1.200	120.8	LOS F	74.8	536.3	0.75	0.96	22.4			
All Vehicles	6916	5.4	$6681{ }^{\text {N1 }}$	5.6	1.200	115.3	LOS F	78.5	590.7	0.86	1.07	23.4			

PHASING SUMMARY

Site: I-06 2030 MIMT \& SIMTA Opt 3 PM

Network: 2030 MIMT \& SIMTA OPT 3 PM

Newbridge Road / Moorebank Avenue
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	44	76
Green Time (sec)	38	26	34
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	44	32	40
Phase Split	38%	28%	34%

I-07 Intersection of Moorebank Avenue and Heathcote Road

MOVEMENT SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov ID ODMo	Demand	Flows	Arrival	fows	Deg. Satn	Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
v	Total	HV	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)												
2 T1	1952	7.2	1766	7.3	1.165	196.3	LOS F	58.4	440.6	1.00	1.85	4.9
3 R2	23	18.2	21	18.4	0.189	71.8	LOS F	1.3	10.9	0.98	0.71	30.6
Approach	1975	7.3	1787 N1	7.4	1.165	194.8	LOS F	58.4	440.6	1.00	1.84	5.1
East: Heathcote Road (E)												
4 L2	29	57.1	29	57.1	1.442	482.1	LOS F	102.2	769.9	1.00	1.95	6.8
6 R2	952	5.9	952	5.9	1.442	481.9	LOS F	102.2	769.9	1.00	1.95	6.8
Approach	981	7.4	981	7.4	1.442	482.0	LOS F	102.2	769.9	1.00	1.95	6.8
North: Moorebank Avenue (N)												
7 L2	888	17.7	698	19.8	0.483	11.0	LOS A	14.9	124.4	0.56	0.72	50.8
8 T1	784	8.1	607	9.1	0.327	20.7	LOS B	11.5	86.7	0.64	0.55	13.4
Approach	1673	13.2	$1305{ }^{\text {N1 }}$	14.8	0.483	15.5	LOS B	14.9	124.4	0.59	0.64	42.3
All Vehicles	4628	9.4	4073 N1	10.7	1.442	206.5	LOS F	102.2	769.9	0.87	1.48	8.7

PHASING SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=133$ seconds (User-Given Phase Times)

Phase Timing Results	B	A	D
Phase	Yes	No	No
Reference Phase	0	15	88
Phase Change Time (sec)	9	67	39
Green Time (sec)	4	4	4
Yellow Time (sec)	2	2	2
All-Red Time (sec)	15	73	45
Phase Time (sec)	11%	55%	34%
Phase Split			

Phase B

MOVEMENT SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 3 PM
\$
Network: 2030 MIMT \& SIMTA OPT 3 PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (User-Given Phase Times)

Movement Performance - Vehicles												
Mov ID ODMo	Demand	Flows	Arrival	Flows	Deg. Satn	Average	Level of	95\% Back	of Queue	Prop.	Effective	Average
v	Total	HV	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)												
2 T1	1241	8.7	1241	8.7	0.987	82.2	LOS F	58.0	440.6	1.00	1.35	10.5
$3 \quad \mathrm{R} 2$	48	8.7	48	8.7	0.401	64.7	LOS E	2.8	20.9	1.00	0.74	32.2
Approach	1289	8.7	1289	8.7	0.987	81.6	LOS F	58.0	440.6	1.00	1.33	11.6
East: Heathcote Road (E)												
4 L2	76	19.4	76	19.4	1.458	468.8	LOS F	96.2	715.9	1.00	2.06	6.9
6 R2	812	5.2	812	5.2	1.458	468.0	LOS F	96.2	715.9	1.00	2.07	7.0
Approach	887	6.4	887	6.4	1.458	468.0	LOS F	96.2	715.9	1.00	2.07	7.0
North: Moorebank Avenue (N)												
7 L2	884	3.7	770	3.7	0.366	7.5	LOS A	5.1	37.2	0.24	0.61	53.8
8 T1	1481	5.9	1290	6.0	0.669	6.3	LOS A	11.8	87.7	0.35	0.32	29.3
Approach	2365	5.1	2060 N1	5.2	0.669	6.7	LOS A	11.8	87.7	0.31	0.43	48.5
All Vehicles	4542	6.4	4237 N1	6.8	1.458	126.1	LOS F	96.2	715.9	0.66	1.04	12.4

PHASING SUMMARY

Site: I-07 2030 MIMT \& SIMTA Opt 3 PM
${ }_{\phi}^{\boldsymbol{\phi}}$ Network: 2030 MIMT \& SIMTA OPT 3 PM

Moorebank Avenue / Heathcote Road
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	B	A	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	14	80
Green Time (sec)	8	60	30
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	14	66	36
Phase Split	12%	57%	31%

Phase B

I-08 Intersection of Moorebank Avenue and Industry Park Access

MOVEMENT SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)

Movement Performance - Vehicles																	
Mov ID ODMo v	Demand Flows Total HV veh/h \%		Arrival Flows Deg. SatnTotal HV				Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed				
			Vehicles	Distance													
			veh/h	\%		v/c	sec		veh	m		per veh	km/h				
South: Moorebank Avenue (S)																	
1 L2	91	3.5					91	3.5		0.056	6.1	LOS A	0.4	3.0	0.12	0.58	43.1
2 T1	1933	6.6	1933	6.6		1.261	297.7	LOS F	170.6	1281.3	1.00	2.24	5.5				
Approach	2023	6.5	2023	6.5		1.261	284.6	LOS F	170.6	1281.3	0.96	2.16	5.8				
North: Moorebank Avenue (N)																	
8 T1	789	17.3	627	20.2		0.223	2.6	LOS A	4.2	35.1	0.23	0.20	56.8				
9 R2	65	38.7	54	43.1		1.027	125.9	LOS F	4.9	47.1	1.00	1.07	11.1				
Approach	855	19.0	681 N1	22.0		1.027	12.3	LOS A	4.9	47.1	0.29	0.27	46.3				
West: Industry Park Access (W)																	
10 L2	34	62.5	34	62.5		0.415	64.9	LOS E	2.3	24.3	0.95	0.73	9.6				
12 R2	58	72.7	58	72.7		0.413	68.0	LOS E	2.7	31.4	0.98	0.73	19.8				
Approach	92	69.0	92	69.0		0.415	66.9	LOS E	2.7	31.4	0.97	0.73	16.8				
All Vehicles	2969	12.0	2795 N1	12.7		1.261	211.2	LOS F	170.6	1281.3	0.80	1.66	8.3				

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 3 AM

Network: 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 133 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	116
Green Time (sec)	110	11
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	116	17
Phase Split	87%	13%

MOVEMENT SUMMARY
Site: I-08 2030 MIMT \& SIMTA Opt 3 PM

Network: 2030 MIMT \& SIMTA OPT 3 PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 116 seconds (Network Cycle Time)

Movement Performance - Vehicles												
Mov ID ODMo v	Demand Flows Total HV veh/h \%		Arrival Flows Deg. Satn			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed
			Total	HV				Vehicles	Distance			
			veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)												
1 L2	11	30.0	11	30.0	0.009	6.6	LOS A	0.1	0.5	0.14	0.56	42.9
2 T1	1211	8.1	1211	8.1	0.514	4.8	LOS A	13.3	100.4	0.39	0.36	51.7
Approach	1221	8.3	1221	8.3	0.514	4.8	LOS A	13.3	100.4	0.39	0.36	51.6
North: Moorebank Avenue (N)												
8 T1	1555	5.6	1345	5.5	0.459	4.4	LOS A	12.5	93.0	0.36	0.33	54.7
9 R2	25	62.5	22	62.2	0.168	15.7	LOS B	0.5	5.6	0.42	0.66	32.1
Approach	1580	6.5	1367 N1	6.4	0.459	4.6	LOS A	12.5	93.0	0.37	0.34	54.3
West: Industry Park Access (W)												
10 L2	34	15.6	34	15.6	0.103	4.3	LOS A	0.4	3.4	0.28	0.39	26.2
12 R2	189	10.0	189	10.0	0.490	56.1	LOS D	5.2	40.1	0.98	0.78	22.4
Approach	223	10.8	223	10.8	0.490	48.3	LOS D	5.2	40.1	0.88	0.72	22.6
All Vehicles	3024	7.5	2811 N1	8.1	0.514	8.2	LOS A	13.3	100.4	0.42	0.38	48.0

PHASING SUMMARY

Site: I-08 2030 MIMT \& SIMTA Opt 3 PM

Network: 2030 MIMT \& SIMTA OPT 3 PM

Moorebank Avenue / Industry Park Access
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=116$ seconds (Network Cycle Time)
Phase Timing Results

Phase	A	C
Reference Phase	Yes	No
Phase Change Time (sec)	0	97
Green Time (sec)	91	13
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	97	19
Phase Split	84%	16%

Phase A

I-09 Intersection of Moorebank Avenue and Church Road

MOVEMENT SUMMARY

∇ Site: I-09 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / Church Road
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	2134	7.8	0.813	9.0	LOS A	11.7	88.8	0.12	0.10	51.7	
3 R2	284	8.6	0.813	32.9	LOS C	11.7	88.8	1.00	0.79	37.1	
Approach	2418	7.9	1.016	11.8	NA	11.7	88.8	0.23	0.18	49.4	
East: Church Road (E)											
4 L2	204	15.8	0.276	8.0	LOS A	1.1	9.2	0.53	0.77	47.0	
6 R2	7	0.0	0.945	589.5	LOS F	2.0	13.8	1.00	1.05	5.5	
Approach	211	15.3	0.945	28.2	LOS B	2.0	13.8	0.55	0.78	37.2	
North: Moorebank Avenue (N)											
7 L2	37	0.0	0.253	5.6	LOS A	0.0	0.0	0.00	0.05	57.7	
8 T1	819	22.4	0.253	0.0	LOS A	0.0	0.0	0.00	0.02	59.6	
Approach	856	21.4	0.253	0.3	NA	0.0	0.0	0.00	0.03	59.6	
All Vehicles	3485	11.7	1.016	10.0	NA	11.7	88.8	0.19	0.18	50.4	

MOVEMENT SUMMARY

Site: I-09 2030 MIMT \& SIMTA OPT 3 PM
Moorebank Avenue / Church Road
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Giveway / Yield (Two-Way)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	1185	11.6	0.598	3.8	LOS A	6.1	48.1	0.09	0.06	56.2	
3 R2	105	13.4	0.598	45.9	LOS D	6.1	48.1	1.00	0.62	32.7	
Approach	1290	11.7	0.598	7.2	NA	6.1	48.1	0.16	0.10	53.0	
East: Church Road (E)											
4 L2	405	5.0	1.222	164.1	LOS F	41.0	301.2	1.00	3.03	15.6	
6 R2	1	0.0	0.117	372.6	LOS F	0.3	2.0	0.99	1.00	8.2	
Approach	406	5.0	1.222	164.6	LOS F	41.0	301.2	1.00	3.02	15.5	
North: Moorebank Avenue (N)											
7 L2	13	7.7	0.884	6.6	LOS A	0.0	0.0	0.00	0.01	55.9	
8 T1	1632	6.2	0.884	1.2	LOS A	0.0	0.0	0.00	0.00	57.6	
Approach	1645	6.3	0.884	1.3	NA	0.0	0.0	0.00	0.00	57.6	
All Vehicles	3341	8.2	1.222	23.4	NA	41.0	301.2	0.19	0.41	42.0	

I-10 Intersection of Heathcote Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 3 AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=131$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	291	1.1	0.204	8.8	LOS A	4.3	30.7	0.30	0.64	47.7	
5 T1	2073	5.2	1.265	174.0	LOS F	119.2	871.7	1.00	1.60	15.3	
6 R2	647	3.3	1.268	159.7	LOS F	28.4	204.2	1.00	1.23	16.7	
Approach	3011	4.4	1.268	155.0	LOS F	119.2	871.7	0.93	1.43	16.4	
NorthEast: Nuwarra Road (NE)											
7 L2	416	4.8	0.484	24.5	LOS B	16.5	120.1	0.71	0.78	42.4	
8 T1	301	7.0	0.481	53.9	LOS D	8.8	65.6	0.95	0.78	26.0	
9 R2	508	5.8	1.436	280.3	LOS F	34.0	249.7	1.00	1.43	10.4	
Approach	1226	5.8	1.436	137.9	LOS F	34.0	249.7	0.89	1.05	17.2	
NorthWest: Heathcote Road (NW)											
10 L2	254	11.6	0.334	21.5	LOS B	7.8	60.1	0.70	0.76	42.7	
11 T1	1044	11.2	0.957	51.9	LOS D	40.8	313.1	0.90	0.94	32.1	
12 R2	235	6.3	0.786	75.4	LOS F	8.0	59.1	1.00	0.88	19.9	
Approach	1532	10.5	0.957	50.4	LOS D	40.8	313.1	0.88	0.90	31.4	
SouthWest: Wattle Grove Drive (SW)											
1 L2	639	2.1	0.849	51.7	LOS D	31.8	226.4	0.99	1.15	24.8	
2 T1	543	4.5	0.817	61.7	LOS E	19.6	142.5	1.00	0.94	23.8	
3 R2	263	4.0	1.277	207.3	LOS F	30.6	221.5	1.00	1.37	9.9	
Approach	1445	3.4	1.277	83.8	LOS F	31.8	226.4	0.99	1.11	19.1	
All Vehicles	7214	5.7	1.436	115.6	LOS F	119.2	871.7	0.93	1.19	18.9	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 3 AM
Heathcote Road / Nuwarra Road / Wattle Grove Drive 2030 MIMT \& SIMTA OPT 3 AM PEAK 7:45 am - 8:45 am Signals - Fixed Time Cycle Time = 131 seconds (User-Given Phase Times)

MOVEMENT SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 3 PM

Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=139$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
SouthEast: Heathcote Road (SE)											
4 L2	337	2.5	0.282	15.4	LOS B	8.9	63.6	0.45	0.70	42.4	
5 T1	1331	5.4	0.992	66.0	LOS E	54.6	400.4	0.93	1.05	28.4	
6 R2	469	3.1	1.197	179.1	LOS F	26.2	188.2	1.00	1.22	15.3	
Approach	2137	4.5	1.197	82.9	LOS F	54.6	400.4	0.87	1.03	24.4	
NorthEast: Nuwarra Road (NE)											
7 L2	646	2.8	0.950	74.6	LOS F	44.7	320.2	1.00	1.19	27.0	
8 T1	621	1.4	0.996	88.2	LOS F	27.4	193.9	1.00	1.09	19.1	
9 R2	556	7.0	1.120	135.5	LOS F	29.2	216.3	1.00	1.13	18.1	
Approach	1823	3.6	1.120	97.8	LOS F	44.7	320.2	1.00	1.14	21.2	
NorthWest: Heathcote Road (NW)											
10 L2	258	6.1	0.232	21.3	LOS B	8.5	62.5	0.53	0.73	43.0	
11 T1	1701	2.7	1.170	143.6	LOS F	91.8	658.0	1.00	1.40	17.6	
12 R 2	467	2.0	1.098	128.9	LOS F	23.4	166.5	1.00	1.09	13.6	
Approach	2427	3.0	1.170	127.8	LOS F	91.8	658.0	0.95	1.27	18.1	
SouthWest: Wattle Grove Drive (SW)											
1 L2	305	1.7	0.387	33.9	LOS C	14.1	100.1	0.76	0.85	30.6	
2 T1	376	1.1	0.534	58.3	LOS E	11.8	83.3	0.97	0.80	24.5	
3 R2	395	1.1	1.468	300.7	LOS F	55.6	392.6	1.00	1.51	7.2	
Approach	1077	1.3	1.468	140.4	LOS F	55.6	392.6	0.92	1.08	13.3	
All Vehicles	7464	3.3	1.468	109.4	LOS F	91.8	658.0	0.93	1.14	19.6	

PHASING SUMMARY

Site: I-10 2030 MIMT \& SIMTA OPT 3 PM
Heathcote Road / Nuwarra Road / Wattle Grove Drive
2030 MIMT \& SIMTA OPT 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 139 seconds (User-Given Phase Times)
Phase Timing Results

I-11 Intersection of Newbridge Road and Nuwarra Road

MOVEMENT SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 3 AM
Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Nuwarra Road (S)											
1 L2	37	8.6	0.751	49.6	LOS D	21.6	154.2	0.90	0.83	37.4	
2 T1	334	1.5	0.751	46.6	LOS D	21.6	154.2	0.90	0.83	31.1	
3 R2	809	6.2	1.171	168.1	LOS F	48.7	358.7	1.00	1.21	17.5	
Approach	1180	4.9	1.171	130.0	LOS F	48.7	358.7	0.97	1.09	20.4	
East: Newbridge Road (E)											
4 L2	353	15.9	0.652	28.4	LOS B	23.1	181.8	0.74	0.79	44.8	
5 T1	1311	11.8	0.652	23.9	LOS B	23.5	182.6	0.69	0.64	50.9	
Approach	1664	12.7	0.652	24.8	LOS B	23.5	182.6	0.70	0.67	49.6	
North: Nuwarra Road (N)											
7 L2	8	0.0	0.998	104.8	LOS F	11.2	78.6	1.00	1.13	22.9	
8 T1	156	0.6	1.247	125.2	LOS F	21.0	152.5	1.00	1.18	19.8	
9 R2	143	5.1	1.247	199.9	LOS F	21.0	152.5	1.00	1.38	15.9	
Approach	307	2.7	1.247	159.5	LOS F	21.0	152.5	1.00	1.27	17.7	
West: Newbridge Road (W)											
10 L2	305	2.1	1.161	140.1	LOS F	93.7	700.2	1.00	1.33	20.6	
11 T1	2308	9.9	1.236	148.6	LOS F	107.8	827.5	1.00	1.46	21.3	
Approach	2614	9.0	1.236	147.6	LOS F	107.8	827.5	1.00	1.44	21.2	
All Vehicles	5765	8.9	1.247	109.2	LOS F	107.8	827.5	0.91	1.14	24.9	

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 3 AM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	72	89
Green Time (sec)	66	11	45
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	72	17	51
Phase Split	51%	12%	36%

MOVEMENT SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 3 PM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Nuwarra Road (S)											
1 L2	58	7.3	0.778	71.4	LOS F	15.0	107.3	1.00	0.90	31.7	
2 T1	158	0.6	0.778	67.0	LOS E	15.0	107.3	1.00	0.90	28.8	
3 R2	561	6.1	1.003	104.0	LOS F	24.6	181.5	1.00	1.03	24.1	
Approach	777	5.0	1.003	94.1	LOS F	24.6	181.5	1.00	0.99	25.4	
East: Newbridge Road (E)											
4 L2	728	3.8	0.779	18.5	LOS B	32.5	236.8	0.58	0.78	50.1	
5 T1	2230	6.0	0.779	16.4	LOS B	39.7	294.8	0.65	0.64	55.5	
Approach	2958	5.5	0.779	17.0	LOS B	39.7	294.8	0.64	0.67	54.2	
North: Nuwarra Road (N)											
7 L2	17	0.0	0.844	73.2	LOS F	17.1	120.7	1.00	0.96	29.7	
8 T1	281	1.1	1.055	81.3	LOS F	25.7	182.0	1.00	1.00	26.4	
$9 \quad \mathrm{R} 2$	213	1.5	1.055	129.0	LOS F	25.7	182.0	1.00	1.14	22.1	
Approach	511	1.2	1.055	100.9	LOS F	25.7	182.0	1.00	1.06	24.4	
West: Newbridge Road (W)											
10 L2	104	0.0	0.552	21.6	LOS B	17.9	133.0	0.51	0.52	48.4	
11 T1	1702	8.2	0.627	14.8	LOS B	20.8	156.9	0.51	0.48	56.8	
Approach	1806	7.7	0.627	15.2	LOS B	20.8	156.9	0.51	0.48	56.2	
All Vehicles	6052	5.7	1.055	33.4	LOS C	39.7	294.8	0.68	0.69	44.2	

PHASING SUMMARY

Site: I-11 2030 MIMT \& SIMTA OPT 3 PM

Newbridge Road / Nuwarra Road
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	84	112
Green Time (sec)	78	22	22
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	84	28	28
Phase Split	60%	20%	20%

I-12 Intersection of Newbridge Road and Governor Macquarie Drive

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 3 AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)											
1 L2	14	0.0	0.867	78.5	LOS F	15.6	110.4	1.00	0.98	25.2	
2 T1	197	1.0	0.867	74.1	LOS F	15.6	110.4	1.00	0.98	24.9	
3 R2	684	1.2	1.177	166.5	LOS F	36.9	260.6	1.00	1.25	19.6	
Approach	895	1.1	1.177	144.8	LOS F	36.9	260.6	1.00	1.19	20.4	
East: Newbridge Road (E)											
4 L2	230	3.0	0.169	7.7	LOS A	1.9	13.9	0.18	0.63	58.2	
5 T1	1514	11.2	0.444	14.1	LOS A	17.4	134.2	0.56	0.50	59.8	
6 R2	649	9.9	0.964	91.3	LOS F	26.2	198.7	1.00	0.98	32.2	
Approach	2393	10.1	0.964	34.4	LOS C	26.2	198.7	0.64	0.64	48.2	
North: Governor Macquarie Drive (N)											
7 L2	727	7.8	0.689	52.1	LOS D	21.9	163.5	0.94	0.85	40.3	
8 T1	128	2.3	0.518	63.9	LOS E	8.3	59.5	0.98	0.79	27.0	
9 R2	180	31.5	1.040	120.0	LOS F	16.7	148.9	1.00	1.08	22.4	
Approach	1035	11.3	1.040	65.4	LOS E	21.9	163.5	0.96	0.88	35.0	
West: Newbridge Road (W)											
10 L2	132	29.9	1.226	165.8	LOS F	121.0	929.5	1.00	1.47	18.7	
11 T1	3011	7.5	1.226	158.5	LOS F	124.2	933.4	1.00	1.49	23.9	
12 R2	5	20.0	0.047	33.1	LOS C	0.2	1.8	0.60	0.68	37.7	
Approach	3148	8.5	1.226	158.6	LOS F	124.2	933.4	1.00	1.48	23.7	
All Vehicles	7471	8.5	1.226	104.3	LOS F	124.2	933.4	0.88	1.10	29.5	

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 3 AM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E	G1
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	66	88	112
Green Time (sec)	60	16	18	22
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	66	22	24	28
Phase Split	47%	16%	17%	20%

MOVEMENT SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 3 PM

Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=140$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Brickmakers Drive (S)											
1 L2	11	0.0	0.530	70.2	LOS E	6.8	49.8	0.99	0.78	26.9	
2 T1	92	5.4	0.530	66.1	LOS E	6.8	49.8	0.99	0.78	26.5	
3 R2	257	0.8	0.609	69.8	LOS E	8.6	60.6	1.00	0.80	32.6	
Approach	360	1.9	0.609	68.9	LOS E	8.6	60.6	1.00	0.80	31.1	
East: Newbridge Road (E)											
4 L2	654	1.4	0.461	9.4	LOS A	7.6	53.7	0.28	0.69	57.1	
5 T1	2763	4.9	0.831	28.4	LOS B	51.8	380.1	0.76	0.76	52.1	
6 R2	707	10.3	1.052	126.4	LOS F	33.5	255.2	1.00	1.06	26.9	
Approach	4124	5.3	1.052	42.2	LOS C	51.8	380.1	0.72	0.80	45.1	
North: Governor Macquarie Drive (N)											
7 L2	583	7.9	0.440	46.3	LOS D	15.7	117.1	0.85	0.81	42.1	
8 T1	298	1.7	1.003	99.9	LOS F	25.1	177.9	1.00	1.09	20.9	
9 R2	305	35.9	1.602	359.7	LOS F	46.6	428.1	1.00	1.47	9.9	
Approach	1186	13.5	1.602	140.4	LOS F	46.6	428.1	0.93	1.05	21.9	
West: Newbridge Road (W)											
10 L2	176	14.9	0.869	46.9	LOS D	46.6	350.2	0.94	0.90	38.8	
11 T1	2099	5.6	0.869	38.9	LOS C	47.4	349.2	0.92	0.88	47.4	
12 R 2	4	0.0	0.070	54.5	LOS D	0.2	1.7	0.80	0.69	30.3	
Approach	2279	6.3	0.869	39.5	LOS C	47.4	350.2	0.93	0.88	46.8	
All Vehicles	7948	6.6	1.602	57.3	LOS E	51.8	428.1	0.82	0.86	39.4	

PHASING SUMMARY

Site: I-12 2030 MIMT \& SIMTA OPT 3 PM
Newbridge Road / Governor Macquarie Drive
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 140 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	D	E			
Reference Phase	Yes	No	No			
Phase Change Time (sec)	0	64	86			
Green Time (sec)	58	16	15			
Yellow Time (sec)	4	4	4			
All-Red Time (sec)	2	2	2			
Phase Time (sec)	64	22	21			
Phase Split	46 \%	16 \%	15 \%			
Phase A	Phase D$\underbrace{\text { dIL }}$				Phase E	Phase G1

I-13 Intersection of Moorebank Avenue and M5 Motorway

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 3 AM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 74 seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo v	Demand Total veh/h	lows HV \%	Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Moorebank Avenue (S)										
1 L2	402	36.9	0.443	10.4	LOS A	5.1	54.8	0.49	0.70	48.5
2 T1	718	10.7	0.881	40.7	LOS C	15.5	123.5	1.00	1.08	34.5
3 R2	320	6.5	0.464	33.5	LOS C	5.7	43.3	0.91	0.79	36.6
Approach	1440	17.1	0.881	30.7	LOS C	15.5	123.5	0.84	0.91	38.1
East: M5 Motorway on\&off ramp (E)										
4 L2	384	12.6	0.826	29.9	LOS C	13.0	106.2	0.99	1.02	38.3
6 R2	237	6.2	0.246	28.8	LOS C	3.4	25.1	0.82	0.76	40.4
Approach	621	10.2	0.826	29.5	LOS C	13.0	106.2	0.92	0.92	39.1
North: Moorebank Avenue (N)										
7 L2	51	47.9	0.050	7.9	LOS A	0.4	3.5	0.29	0.60	51.1
8 T1	290	17.7	0.373	26.7	LOS B	4.5	38.8	0.89	0.72	40.5
9 R2	454	25.5	0.772	37.8	LOS C	10.0	85.2	0.97	0.88	36.3
Approach	794	24.1	0.772	31.8	LOS C	10.0	85.2	0.90	0.80	38.4
West: M5 Motorway on\&off ramp (W)										
10 L2	1722	7.5	0.977	8.2	LOS A	0.0	0.0	0.00	0.50	51.2
12 R2	861	16.1	1.009	87.7	LOS F	27.8	240.6	1.00	1.34	23.0
Approach	2583	10.4	1.009	34.7	LOS C	27.8	240.6	0.33	0.78	37.1
All Vehicles	5438	14.1	1.009	32.6	LOS C	27.8	240.6	0.62	0.83	37.8

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 3 AM

Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=74$ seconds (User-Given Phase Times)

Phase Timing Results	A	E	F
Phase	Yes	No	No
Reference Phase	0	24	51
Phase Change Time (sec)	17	20	16
Green Time (sec)	4	4	4
Yellow Time (sec)	3	3	3
All-Red Time (sec)	24	27	23
Phase Time (sec)	32%	36%	31%
Phase Split			

MOVEMENT SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 3 PM
Moorebank Avenue / the M5 Motorway
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time $=94$ seconds (User-Given Phase Times)

Movement Performance - Vehicles										
Mov ID ODMo	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)										
1 L2	739	15.3	1.081	137.1	LOS F	67.9	585.0	1.00	1.43	17.1
2 T1	268	13.4	1.036	107.6	LOS F	10.2	83.8	1.00	1.28	20.3
3 R 2	446	9.1	0.399	29.6	LOS C	8.4	66.6	0.78	0.78	38.2
Approach	1453	13.0	1.081	98.7	LOS F	67.9	585.0	0.93	1.20	21.3
East: M5 Motorway on\&off ramp (E)										
4 L2	459	7.1	0.567	16.5	LOS B	8.9	68.3	0.69	0.81	45.5
6 R2	97	21.7	0.177	42.7	LOS D	2.0	16.2	0.89	0.73	34.9
Approach	556	9.7	0.567	21.1	LOS B	8.9	68.3	0.72	0.79	43.0
North: Moorebank Avenue (N)										
7 L2	139	6.1	0.118	7.9	LOS A	1.3	9.9	0.30	0.63	52.3
8 T1	756	7.4	0.844	43.9	LOS D	18.8	143.7	1.00	1.00	33.4
9 R2	1488	7.0	0.920	43.0	LOS D	34.3	254.6	1.00	1.06	34.8
Approach	2383	7.1	0.920	41.3	LOS C	34.3	254.6	0.96	1.02	35.1
West: M5 Motorway on\&off ramp (W)										
10 L2	620	13.8	0.367	5.8	LOS A	0.0	0.0	0.00	0.52	54.4
12 R2	362	32.2	0.779	52.2	LOS D	8.9	92.6	1.00	0.93	30.3
Approach	982	20.6	0.779	22.9	LOS B	8.9	92.6	0.37	0.67	42.7
All Vehicles	5374	11.4	1.081	51.3	LOS D	67.9	585.0	0.82	0.98	31.5

PHASING SUMMARY

Site: I-13 2030 MIMT \& SIMTA OPT 3 PM

Moorebank Avenue / the M5 Motorway

2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 94 seconds (User-Given Phase Times)

Phase Timing Results

Phase	A	C	E	F
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	14	30	53
Green Time (sec)	7	9	16	34
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	3	3	3	3
Phase Time (sec)	14	16	23	41
Phase Split	15%	17%	24%	44%

Phase A

I-14 Intersection of M5 Motorway and Hume Highway

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 3 AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time $=159$ seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	4256	4.6	1.027	59.4	LOS E	152.3	1108.5	1.00	1.21	33.2	
3 R2	718	3.8	0.987	68.7	LOS E	24.5	177.1	1.00	1.03	31.0	
Approach	4974	4.5	1.027	60.8	LOS E	152.3	1108.5	1.00	1.18	32.9	
East: M5 Motorway on\&off-ramp (E)											
4 L2	338	5.9	0.134	30.5	LOS C	4.8	35.4	0.60	0.71	41.9	
6 R2	1212	6.5	1.289	358.8	LOS F	74.4	560.4	1.00	1.54	7.2	
Approach	1550	6.3	1.289	287.2	LOS F	74.4	560.4	0.91	1.36	9.5	
North: Hume Highway (N)											
7 L2	827	9.2	0.695	15.2	LOS B	28.8	224.1	0.58	0.75	44.9	
8 T1	1208	6.7	0.490	28.5	LOS B	17.8	131.7	0.62	0.55	43.3	
Approach	2036	7.7	0.695	23.1	LOS B	28.8	224.1	0.60	0.63	43.8	
All Vehicles	8560	5.6	1.289	92.8	LOS F	152.3	1108.5	0.89	1.08	25.3	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 3 AM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C	D
Reference Phase	No	No	No	Yes
Phase Change Time (sec)	20	97	123	0
Green Time (sec)	70	19	29	13
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	3	3	3	3
Phase Time (sec)	77	26	36	20
Phase Split	48%	16%	23%	13%

Phase A

MOVEMENT SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 3 PM

M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. SatnTotal HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Hume Highway (S)											
2 T1	2555	3.9	0.624	2.2	LOS A	7.1	51.1	0.12	0.11	58.3	
3 R2	401	1.8	1.023	122.1	LOS F	20.4	145.1	1.00	1.07	22.6	
Approach	2956	3.6	1.023	18.4	LOS B	20.4	145.1	0.24	0.24	48.0	
East: M5 Motorway on\&off-ramp (E)											
4 L2	1535	3.3	1.154	259.1	LOS F	102.5	737.7	1.00	1.36	13.2	
6 R2	1291	5.6	1.300	369.9	LOS F	82.2	612.7	1.00	1.56	7.0	
Approach	2826	4.3	1.300	309.7	LOS F	102.5	737.7	1.00	1.45	10.0	
North: Hume Highway (N)											
7 L2	883	5.6	0.695	14.5	LOS A	27.6	207.7	0.60	0.81	45.6	
8 T1	2837	2.4	0.870	20.5	LOS B	51.6	368.7	0.78	0.73	47.0	
Approach	3720	3.2	0.870	19.1	LOS B	51.6	368.7	0.74	0.75	46.7	
All Vehicles	9502	3.7	1.300	105.3	LOS F	102.5	737.7	0.66	0.80	23.5	

PHASING SUMMARY

Site: I-14 2030 MIMT \& SIMTA OPT 3 PM
M5 Motorway / Hume Highway
2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Signals - Fixed Time Cycle Time = 159 seconds (User-Given Phase Times)
Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	97	121
Green Time (sec)	90	17	31
Yellow Time (sec)	4	4	4
All-Red Time (sec)	3	3	3
Phase Time (sec)	97	24	38
Phase Split	61%	15%	24%

I-15 Intersection of Cambridge Avenue and Canterbury Road MOVEMENT SUMMARY

Site: I-15 2030 MIMT \& SIMTA OPT 3 AM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 3 AM PEAK 7:45 am - 8:45 am
Roundabout

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Canterbury Road (S)											
1 L2	449	3.5	0.517	6.3	LOS A	3.4	24.2	0.61	0.71	52.9	
2 T1	8	0.0	0.959	15.7	LOS B	25.6	181.8	1.00	1.10	46.0	
$3 \quad \mathrm{R} 2$	1187	1.8	0.959	21.1	LOS B	25.6	181.8	1.00	1.10	46.1	
Approach	1645	2.2	0.959	17.0	LOS B	25.6	181.8	0.89	0.99	47.6	
East: Cambridge Avenue (E)											
4 L2	307	3.1	0.163	3.5	LOS A	0.0	0.0	0.00	0.43	56.5	
5 T1	81	7.8	0.079	4.9	LOS A	0.4	3.1	0.45	0.54	53.7	
6 R2	54	9.8	0.079	10.2	LOS A	0.4	3.1	0.45	0.57	53.9	
Approach	442	4.8	0.163	4.6	LOS A	0.4	3.1	0.14	0.47	55.6	
North: Railway Parade (N)											
7 L2	362	0.6	1.057	97.8	LOS F	24.0	169.1	1.00	1.87	23.0	
8 T1	3	0.0	0.696	38.1	LOS C	5.9	41.8	1.00	1.20	36.3	
9 R2	168	1.9	0.696	43.5	LOS D	5.9	41.8	1.00	1.20	34.3	
Approach	534	1.0	1.057	80.3	LOS F	24.0	169.1	1.00	1.65	25.5	
West: Glenfield Road (W)											
10 L2	399	6.3	1.873	433.0	LOS F	102.2	755.5	1.00	3.27	6.5	
11 T1	240	7.0	1.873	433.7	LOS F	102.2	755.5	1.00	3.16	6.6	
12 R2	367	6.9	1.873	440.7	LOS F	82.0	607.6	1.00	2.94	6.7	
Approach	1007	6.7	1.873	436.0	LOS F	102.2	755.5	1.00	3.12	6.6	
All Vehicles	3628	3.6	1.873	141.1	LOS F	102.2	755.5	0.85	1.62	17.7	

MOVEMENT SUMMARY

θ Site: I-15 2030 MIMT \& SIMTA OPT 3 PM
Canterbury Road / Cambridge Avenue / Glenfield Road 2030 MIMT \& SIMTA Opt 3 PM PEAK 4:30 pm - 5:30 pm
Roundabout

Movement Performance - Vehicles										
Mov ID ODMo v	Deman Total veh/h	$\begin{array}{r} \text { lows } \\ \text { HV } \\ \% \\ \hline \end{array}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	of Queue Distance m	Prop. Queued	Effective Stop Rate per veh	Average Speed km/h
South: Canterbury Road (S)										
1 L2	338	2.2	0.505	9.7	LOS A	3.4	24.2	0.82	0.96	50.3
2 T1	6	0.0	0.426	7.8	LOS A	2.8	19.5	0.79	0.95	50.9
3 R2	334	1.3	0.426	13.2	LOS A	2.8	19.5	0.79	0.95	51.0
Approach	678	1.7	0.505	11.4	LOS A	3.4	24.2	0.81	0.96	50.7
East: Cambridge Avenue (E)										
4 L2	1285	2.0	0.677	3.6	LOS A	0.0	0.0	0.00	0.43	56.3
5 T1	325	7.1	0.505	7.5	LOS A	4.4	31.7	0.78	0.79	51.8
6 R2	370	0.9	0.505	13.0	LOS A	4.4	31.7	0.84	0.84	51.9
Approach	1981	2.6	0.677	6.0	LOS A	4.4	31.7	0.28	0.57	54.7
North: Railway Parade (N)										
7 L2	125	1.7	0.192	7.9	LOS A	1.0	6.9	0.69	0.80	52.8
8 T1	0	0.0	0.000	0.0	NA	0.0	0.0	0.00	0.00	0.0
9 R2	240	8.3	0.296	12.7	LOS A	1.7	12.8	0.73	0.86	50.0
Approach	365	6.1	0.296	11.0	LOS A	1.7	12.8	0.72	0.84	51.0
West: Glenfield Road (W)										
10 L2	271	4.7	0.450	9.2	LOS A	3.1	22.5	0.79	0.89	50.6
11 T1	54	0.0	0.450	9.1	LOS A	3.1	22.5	0.79	0.89	52.5
12 R2	451	3.7	0.522	14.5	LOS B	4.3	31.1	0.83	0.94	48.8
Approach	775	3.8	0.522	12.3	LOS A	4.3	31.1	0.81	0.92	49.7
All Vehicles	3799	3.0	0.677	8.7	LOS A	4.4	31.7	0.53	0.73	52.6

7. Mitigation measures for cumulative scenario 3

I-01 Intersection of Moorebank Avenue, Anzac Road and Bapaume Road

MOVEMENT SUMMARY

Site: I-01 Cumulative Scenario 3 AM UP
Intersection of Moorebank Avenue, Anzac Road and Bapaume Road 2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=120$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
1 L2	20	0.0	0.734	22.8	LOS B	23.2	201.1	0.67	0.62	38.2	
2 T1	1264	17.3	0.734	17.2	LOS B	23.2	201.1	0.67	0.61	43.5	
3 R2	473	3.1	0.918	77.4	LOS F	16.4	118.2	1.00	1.00	23.2	
Approach	1757	13.3	0.918	33.5	LOS C	23.2	201.1	0.76	0.72	34.7	
East: Anzac Road (E)											
4 L2	271	3.1	0.454	38.6	LOS C	12.5	89.9	0.83	0.81	33.2	
5 T1	4	0.0	0.454	34.3	LOS C	12.5	89.9	0.83	0.81	32.2	
6 R2	224	13.6	0.851	68.0	LOS E	14.4	112.8	1.00	0.95	26.9	
Approach	499	7.8	0.851	51.8	LOS D	14.4	112.8	0.91	0.87	29.8	
North: Moorebank Avenue (N)											
7 L2	383	9.9	0.294	8.6	LOS A	5.3	40.2	0.32	0.65	51.1	
8 T1	1452	13.4	0.904	30.7	LOS C	37.7	316.5	0.75	0.79	35.8	
9 R2	101	3.1	0.393	57.2	LOS E	5.5	39.6	0.95	0.78	25.1	
Approach	1936	12.2	0.904	27.7	LOS B	37.7	316.5	0.67	0.76	37.6	
West: Bapaume Road (W)											
10 L2	5	60.0	0.013	12.5	LOS A	0.1	1.0	0.48	0.58	41.6	
11 T1	1	0.0	0.015	56.1	LOS D	0.1	0.8	0.94	0.61	26.7	
12 R2	1	0.0	0.015	59.8	LOS E	0.1	0.8	0.94	0.61	22.9	
Approach	7	42.9	0.015	25.5	LOS B	0.1	1.0	0.61	0.59	35.0	
All Vehicles	4199	12.2	0.918	33.0	LOS C	37.7	316.5	0.74	0.76	35.2	

PHASING SUMMARY

Site: I-01 Cumulative Scenario 3 AM UP

Intersection of Moorebank Avenue, Anzac Road and Bapaume Road 2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=120$ seconds (Optimum Cycle Time - Minimum Delay)
Phase Timing Results

Phase	A	B	D
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	69	97
Green Time (sec)	63	22	17
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	69	28	23
Phase Split	58%	23%	19%

MOVEMENT SUMMARY

Site: I-01 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue, Anzac Road and Bapaume Road 2030 Cumulative Scenario 3 PM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=115$ seconds (Optimum Cycle Time - Minimum Delay)

Movement Performance - Vehicles										
Mov ID ODMo	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)										
1 L2	1	0.0	0.706	24.2	LOS B	21.0	179.1	0.69	0.62	37.5
2 T1	1186	14.3	0.706	18.6	LOS B	21.0	179.1	0.69	0.62	42.5
3 R2	261	0.8	1.016	112.2	LOS F	10.7	75.4	1.00	1.17	18.3
Approach	1448	11.8	1.016	35.5	LOS C	21.0	179.1	0.74	0.72	33.8
East: Anzac Road (E)										
4 L2	568	2.2	0.835	45.4	LOS D	31.5	224.5	0.98	0.92	30.9
5 T1	1	0.0	0.835	41.1	LOS C	31.5	224.5	0.98	0.92	30.0
6 R2	391	5.4	1.053	138.8	LOS F	38.7	283.2	1.00	1.29	17.2
Approach	960	3.5	1.053	83.4	LOS F	38.7	283.2	0.99	1.07	23.0
North: Moorebank Avenue (N)										
7 L2	353	3.9	0.257	7.1	LOS A	3.2	23.3	0.24	0.62	52.4
8 T1	1419	13.2	0.904	33.0	LOS C	41.0	341.5	0.82	0.87	34.7
$9 \quad \mathrm{R} 2$	23	18.2	0.202	63.1	LOS E	1.3	10.5	0.98	0.71	23.7
Approach	1795	11.4	0.904	28.3	LOS B	41.0	341.5	0.71	0.82	37.5
West: Bapaume Road (W)										
10 L2	111	4.8	0.286	16.8	LOS B	2.2	15.8	0.69	0.72	40.3
11 T1	7	0.0	0.058	35.4	LOS C	0.8	5.3	0.78	0.66	32.7
12 R2	11	0.0	0.058	39.1	LOS C	0.8	5.3	0.78	0.66	28.6
Approach	128	4.1	0.286	19.7	LOS B	2.2	15.8	0.71	0.71	38.6
All Vehicles	4332	9.6	1.053	42.7	LOS D	41.0	341.5	0.78	0.84	31.6

PHASING SUMMARY

Site: I-01 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue, Anzac Road and Bapaume Road
2030 Cumulative Scenario 3 PM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time = 115 seconds (Optimum Cycle Time - Minimum Delay)

Phase Timing Results

Phase	A	C	B
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	63	101
Green Time (sec)	57	32	8
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	63	38	14
Phase Split	55%	33%	12%

I-02 Intersection of Moorebank Avenue and DNSDC Access

MOVEMENT SUMMARY

Site: I-02 Cumulative Scenario 3 AM UP
Intersection of Moorebank Avenue and DNSDC Access 2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	1718	11.7	0.627	0.5	LOS A	2.1	17.3	0.06	0.05	59.4	
$3 \quad \mathrm{R} 2$	44	2.4	0.201	17.9	LOS B	1.0	7.3	0.69	0.72	43.8	
Approach	1762	11.5	0.627	1.0	LOS A	2.1	17.3	0.07	0.07	58.8	
East: DNSDC Access (E)											
4 L2	6	33.3	0.466	60.3	LOS E	1.5	22.3	1.00	0.74	29.3	
6 R2	39	83.8	0.466	62.7	LOS E	1.5	22.3	1.00	0.74	21.8	
Approach	45	76.7	0.466	62.4	LOS E	1.5	22.3	1.00	0.74	22.8	
North: Moorebank Avenue (N)											
7 L2	516	11.4	0.773	16.6	LOS B	24.4	200.7	0.66	0.73	42.0	
8 T1	1205	11.9	0.773	6.6	LOS A	24.4	200.7	0.47	0.47	52.9	
Approach	1721	11.7	0.773	9.6	LOS A	24.4	200.7	0.53	0.55	49.3	
All Vehicles	3528	12.4	0.773	6.0	LOS A	24.4	200.7	0.31	0.31	52.9	

PHASING SUMMARY

Site: I-02 Cumulative Scenario 3 AM UP
Intersection of Moorebank Avenue and DNSDC Access 2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)

Phase Timing Results

Phase	A	B	C
Reference Phase	Yes	No	No
Phase Change Time (sec)	0	72	88
Green Time (sec)	66	10	6
Yellow Time (sec)	4	4	4
All-Red Time (sec)	2	2	2
Phase Time (sec)	72	16	12
Phase Split	72%	16%	12%

MOVEMENT SUMMARY

Site: I-02 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue and DNSDC Access 2030 Cumulative Scenario 3 PM PEAK - Proposed upgrade Signals - Fixed Time Cycle Time $=100$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop.Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)											
2 T1	1083	13.4	0.457	2.2	LOS A	3.6	30.2	0.15	0.13	57.7	
3 R2	1	100.0	0.016	21.0	LOS B	0.0	0.4	0.52	0.63	42.1	
Approach	1084	13.5	0.457	2.2	LOS A	3.6	30.2	0.15	0.13	57.7	
East: DNSDC Access (E)											
4 L2	21	0.0	0.855	59.5	LOS E	10.7	83.5	1.00	0.98	29.9	
6 R2	363	7.2	0.855	59.7	LOS E	10.7	83.5	1.00	0.97	25.1	
Approach	384	6.8	0.855	59.7	LOS E	10.7	83.5	1.00	0.97	25.4	
North: Moorebank Avenue (N)											
7 L2	46	88.6	0.819	11.4	LOS A	16.8	138.5	0.37	0.37	46.6	
8 T1	1952	8.1	0.819	4.2	LOS A	16.8	138.5	0.36	0.35	55.8	
Approach	1998	10.0	0.819	4.3	LOS A	16.8	138.5	0.36	0.35	55.6	
All Vehicles	3466	10.8	0.855	9.8	LOS A	16.8	138.5	0.37	0.35	50.1	

PHASING SUMMARY

Site: I-02 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue and DNSDC Access
2030 Cumulative Scenario 3 PM PEAK - Proposed upgrade
Signals - Fixed Time Cycle Time = 100 seconds (User-Given Cycle Time)
Phase Timing Results

Phase	A	B
Reference Phase	Yes	No
Phase Change Time (sec)	0	75
Green Time (sec)	69	19
Yellow Time (sec)	4	4
All-Red Time (sec)	2	2
Phase Time (sec)	75	25
Phase Split	75%	25%

I-03 Intersection of Moorebank Avenue, MIMT Main Access and SIMTA Central Access

MOVEMENT SUMMARY

Site: I-03 Cumulative Scenario 3 AM UP
Intersection of Moorebank Avenue, MIMT Main Access and SIMTA Central Access 2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=120$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles											
Mov ID ODMo v	Demand Flows Deg. Satn Total HV			Average Delay	Level of Service	95\% Back of Queue		Prop. Queued	Effective Stop Rate	Average Speed	
				Vehicles		Distance					
	veh/h	\%	v/c		sec		veh	m		per veh	km/h
South: Moorebank Avenue (S) per											
1 L2	7	0.0	0.693	9.5	LOS A	12.1	93.4	0.27	0.25	50.2	
2 T1	1709	8.7	0.693	3.9	LOS A	12.1	93.4	0.26	0.25	56.3	
3 R 2	19	5.6	0.212	68.4	LOS E	1.1	8.3	0.99	0.70	20.4	
Approach	1736	8.7	0.693	4.7	LOS A	12.1	93.4	0.27	0.25	55.7	
East: SIMTA Central Access (E)											
4 L2	1	100.0	0.239	65.6	LOS E	1.0	18.3	0.97	0.72	20.2	
6 R2	32	100.0	0.239	66.6	LOS E	1.0	18.3	0.97	0.71	23.9	
Approach	33	100.0	0.239	66.6	LOS E	1.0	18.3	0.97	0.71	23.8	
North: Moorebank Avenue (N)											
7 L2	398	13.0	0.501	14.5	LOS B	13.3	110.2	0.45	0.64	45.0	
8 T1	775	9.4	0.501	4.2	LOS A	13.3	110.2	0.23	0.26	55.4	
9 R2	39	54.1	0.701	75.9	LOS F	2.6	34.7	1.00	0.85	22.7	
Approach	1212	12.0	0.701	9.9	LOS A	13.3	110.2	0.33	0.40	50.1	
West: Main Access (W)											
10 L2	21	100.0	0.133	50.2	LOS D	1.1	20.2	0.86	0.72	27.6	
12 R2	1	0.0	0.006	58.1	LOS E	0.1	0.4	0.93	0.59	22.3	
Approach	22	95.2	0.133	50.6	LOS D	1.1	20.2	0.87	0.71	27.3	
All Vehicles	3002	11.6	0.701	7.8	LOS A	13.3	110.2	0.31	0.32	52.4	

PHASING SUMMARY

Site: I-03 Cumulative Scenario 3 AM UP

Intersection of Moorebank Avenue, MIMT Main Access and SIMTA Central Access
2030 Cumulative Scenario 3 AM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time = 120 seconds (User-Given Cycle Time)

Phase Timing Results	A	B	D
Phase	Yes	No	No
Reference Phase	0	88	108
Phase Change Time (sec)	82	14	6
Green Time (sec)	4	4	4
Yellow Time (sec)	2	2	2
All-Red Time (sec)	88	20	12
Phase Time (sec)	73%	17%	10%
Phase Split			

Phase A

MOVEMENT SUMMARY

Site: I-03 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue, MIMT Main Access and SIMTA Central Access 2030 Cumulative Scenario 3 PM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=120$ seconds (User-Given Cycle Time)

Movement Performance - Vehicles										
Mov ID ODMo	Demand	Flows	Deg. Satn	Average	Level of	95\% Bac	of Queue	Prop.	Effective	Average
v	Total	HV		Delay	Service	Vehicles	Distance	Queued	Stop Rate	Speed
	veh/h	\%	v/c	sec		veh	m		per veh	km/h
South: Moorebank Avenue (S)										
1 L2	1	0.0	0.398	18.8	LOS B	8.5	71.0	0.45	0.39	41.5
2 T1	706	14.3	0.398	13.6	LOS A	8.8	73.1	0.45	0.40	49.1
3 R 2	1	100.0	0.020	42.7	LOS D	0.0	0.6	0.74	0.64	26.6
Approach	708	14.4	0.398	13.6	LOS A	8.8	73.1	0.45	0.40	49.0
East: SIMTA Central Access (E)										
4 L2	17	0.0	0.905	76.3	LOS F	12.1	94.6	1.00	1.03	18.9
6 R2	339	7.1	0.905	76.3	LOS F	12.3	97.2	1.00	1.02	22.6
Approach	356	6.8	0.905	76.3	LOS F	12.3	97.2	1.00	1.02	22.5
North: Moorebank Avenue (N)										
7 L2	40	100.0	0.879	21.9	LOS B	39.5	311.3	0.69	0.70	42.2
8 T1	1912	5.1	0.879	15.4	LOS B	39.5	311.3	0.67	0.67	47.8
9 R2	21	100.0	0.508	75.2	LOS F	1.4	26.3	1.00	0.76	22.9
Approach	1973	8.1	0.879	16.3	LOS B	39.5	311.3	0.67	0.67	47.3
West: Main Access (W)										
10 L2	39	54.1	0.247	38.3	LOS C	1.6	22.0	0.92	0.73	31.0
12 R2	7	0.0	0.034	55.6	LOS D	0.4	2.7	0.91	0.66	22.9
Approach	46	45.5	0.247	41.0	LOS C	1.6	22.0	0.92	0.72	29.7
All Vehicles	3083	9.9	0.905	22.9	LOS B	39.5	311.3	0.66	0.65	42.8

PHASING SUMMARY

Site: I-03 Cumulative Scenario 3 PM UP

Intersection of Moorebank Avenue, MIMT Main Access and SIMTA Central Access 2030 Cumulative Scenario 3 PM PEAK - Proposed Upgrade
Signals - Fixed Time Cycle Time $=120$ seconds (User-Given Cycle Time)

Phase Timing Results

Phase	A	B	C	D
Reference Phase	Yes	No	No	No
Phase Change Time (sec)	0	68	88	108
Green Time (sec)	62	14	14	6
Yellow Time (sec)	4	4	4	4
All-Red Time (sec)	2	2	2	2
Phase Time (sec)	68	20	20	12
Phase Split	57%	17%	17%	10%

Appendix J

Strategic traffic modelling report (August 2014)

Moorebank Intermodal Company

Strategic Traffic Modelling for Moorebank Intermodal Terminal

26 September 2014

Document information

Client: Moorebank Intermodal Company

Title: Strategic Traffic Modelling for Moorebank Intermodal Terminal
Document No: 2189293E-ITP-REP-001 RevA
Date: 26 September 2014

Author, Reviewer and Approver details			
Prepared by:	Mihiri Elangasinghe	Date: 25/09/2014	Signature:
Reviewed by:	Brian Betts	Date: 25/09/2014	Signature:
Approved by:	John Webster	Date: 26/09/2014	Signature:

Distribution

Moorebank Intermodal Company, Parsons Brinckerhoff file, Parsons Brinckerhoff Library

©Parsons Brinckerhoff Australia Pty Limited 2014

Copyright in the drawings, information and data recorded in this document (the information) is the property of Parsons Brinckerhoff. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by Parsons Brinckerhoff. Parsons Brinckerhoff makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Document owner

Parsons Brinckerhoff Australia Pty Limited
ABN 80078004798
Level 27 Ernst \& Young Centre
680 George Street
Sydney NSW 2000
GPO Box 5394
Sydney NSW 2001
Australia
Tel: +61 292725100
Fax: +61 292725101
www.pbworld.com
Certified to ISO 9001, ISO 14001, OHSAS 18001

Contents

Page number

1. Introduction 1
1.1 Project location and study area 1
1.2 Strategic modelling scope 3
2. Existing strategic models 4
2.1 Introduction 4
2.2 Sydney Strategic Travel Model 4
2.3 Sydney Light Commercial Vehicle Model 6
2.4 Sydney Freight Movement Model 7
2.5 Summary of strategic models 13
3. Articulated truck demand 17
3.1 Introduction 17
3.2 Import and export demand 17
3.3 Interstate demand 18
3.4 Background traffic 19
3.5 Time profile 19
3.6 Truck distributions for Port Botany and Moorebank 19
4. Strategic network performance 24
4.1 Introduction 24
4.2 Network performance 24
List of tables
Table 2.1 Strategic model components 4
Table 2.2: \quad Official network changes 6
Table 2.3 Time period factors in LCVM 7
Table $2.4 \quad$ Vehicle characteristics - Port Botany 8
Table 2.5 Operational characteristics - Port Botany 8
Table 2.6: $\quad 2031$ FMM articulated truck totals to/from intermodal terminals 10
Table 2.7 STM Car/LCV trips in 2031 13
Table 2.8 LCV trips in 2031 13
Table $2.9 \quad$ FMM Rigid truck trips in 2031 13
Table 2.10 FMM Articulated truck trips in 2031 14
Table 2.11: FMM Distribution of articulated truck trips to/from Port Botany and Moorebank 15
Table 3.1 Import and export demand road based TEUS/year 17
Table 3.2 Daily Truck Movements - Round Trips 18
Table 3.3 FMM distribution of articulated trips to/from Port Botany across time periods 19
Table 3.4: 'Base Case' articulated truck distributions to/from Port Botany 21
Table 3.5: 'Project Case' articulated truck distributions to/from Port Botany 22
Table 3.6: 'Project Case' articulated truck distributions to/from Moorebank 23
Table 4.1 Comparison of vehicle kilometres travelled in 2031 26
Table 4.2 Comparison of vehicle hours travelled in 2031 27
List of figures
Page number
Figure 1.1 Project site and context 2
Figure 2.1: Intermodal terminals 9
Figure 2.2: Distribution of articulated truck trips from the IMT's in 2031 AM peak 11
Figure 2.3: Distribution of articulated truck trips from the IMT's in 2031 PM peak 12
Figure 4.1 Strategic assessment corridors 25
Figure 4.2: \quad Comparison of articulated truck volumes ('Project Case' versus 'Base Case') 29
Figure 4.3: \quad Comparison of articulated truck volumes to/from Port Botany and Moorebank only ('Project Case’ versus 'Base Case') 30
Figure 4.4 Percentage of articulated truck traffic to/from Moorebank (of all articulated truck flows on links - 'Project Case') 31

List of appendices

Appendix A Strategic modelling assumptions
Appendix B STM Network comparisons
Appendix C Deloitte Distribution Data (by LGA)
Appendix D Deloitte Distribution Data (by Postcode)
Appendix E Change in articulated truck volumes on key corridors
Appendix F Change in speed

1. Introduction

The Moorebank Intermodal Terminal (IMT) Project (the Project) involves the construction and operation of an IMT and associated commercial facilities and warehousing on a site of approximately 220 hectares. The development includes a rail connecting spur to the planned Southern Sydney Freight Line (SSFL) and road entry and exit points from Moorebank Avenue.

The primary function of the IMT is to be a transfer point in the logistics chain for shipping containers in the handling of both international IMEX cargo, and domestic interstate and intrastate (regional) cargo. The key aims of the Project are to increase Sydney's rail freight mode share including: promoting the movement of container freight by rail between Port Botany and western and south-western Sydney; and reducing road freight on Sydney's congested road network.

The Project proponent is Moorebank Intermodal Company (MIC), a Government Business Enterprise set up to facilitate the development of the Project.

The Project site is currently largely occupied by the Department of Defence's (Defence) School of Military Engineering (SME). Under the approved Moorebank Units Relocation (MUR) Project, the SME is planned to be relocated to Holsworthy Barracks by mid-2015, which would enable the construction of the Project to commence.

The key features/components of the Project comprise:

- an IMEX freight terminal - designed to handle up to 1.05 million TEU per annum (525,000 TEU inbound and 525,000 TEU outbound) of IMEX containerised freight to service 'port shuttle' train services between Port Botany and the Project;
- an Interstate freight terminal - designed to handle up to 500,000 TEU per annum (250,000 TEU inbound and 250,000 TEU outbound) of interstate containerised freight to service freight trains travelling to and from regional and interstate destinations; and
- warehousing facilities - with capacity for up to 300,000 square metres $\left(\mathrm{m}^{2}\right)$ of warehousing to provide an interface between the IMT and commercial users of the facilities such as freight forwarders, logistics facilities and retail distribution centres.

The proposal concept described in the main EIS (refer Chapters 7 and 8) provides an indicative layout and operational concept for the Project, while retaining flexibility for future developers and operators of the Project. The proposal concept is indicative only and subject to further refinement during detailed design. The EIS considers three rail access options for the site.

1.1 Project location and study area

The Project is situated in the Sydney suburb of Moorebank; NSW located approximately 35 km south west from the centre of Sydney and approximately 2 km south of Liverpool CBD. It is located in the Liverpool City Council (LCC) Local Government Area (LGA). The site is bounded by Moorebank Avenue to the east, the East Hills Railway Line to the south, the Georges River to the west and the ABB (a power and automation technology manufacturer) and the M5 South Western Motorway to the north. The M5 provides access to other Sydney motorways, with the M7 interchange approximately 5 km by road west of the proposed site.

The Southern Sydney Freight Line has been constructed on the western side of the Georges River along the South Line/Bankstown Line and would be used to service the terminal by rail.

[^0]Figure 1.1 Project site and context

Figure 1.1 Project site and context

1.2 Strategic modelling scope

This report describes the strategic modelling which has been undertaken to provide forecasts input for the transport and accessibility impact assessment. The key output from the strategic model is the changes in the level of articulated truck movements on the local and the wider strategic road network as a consequence of the Project. The strategic level changes are to be based on the differences between the 'Project Case' compared to 'Base Case' scenarios which represents the operation of the road network with and without the Project.

Since the reduction of trucks vehicle kilometres on the roads is one of the projects main goals, the extent to which this goal could be achieved is investigated and reported. This is based around the premise that the Moorebank IMT is an effective means for managing future growth in congestion.

The wider operation of the network can be assessed by considering the metrics of vehicle kilometres travelled (VKT) and vehicle hours travelled (VHT) that together represent the change in usage of the road network. The strategic modelling considers the operation of the Moorebank IMT for the following:

- Planning years (2018 and 2030)
- Time periods (Two hours AM peak, and total daily)
- Class of vehicles (Articulated trucks, and background traffic)
- Traffic on impacted corridors including the M5,M7, and F3 motorways as well as Hume Highway/Cumberland Highway, Foreshore Road, General Holmes Drive and Pennant Hills Road

2. Existing strategic models

2.1 Introduction

Strategic modelling has been undertaken to investigate the traffic related changes associated with the Moorebank IMT Project. This analysis has been based on utilising the Transport for New South Wales (TfNSW) strategic models to examine the projected changes on truck volumes resulting from the operations of the 'Project Case' as compared to the 'Base Case' without the Project.

The travel demand sources available to the study include:

- Sydney Strategic Travel Model (STM)
- Light Commercial Vehicle Model (LCVM)
- Freight Movement Model (FMM) for rigid and articulated commercial vehicles

These three components provide the travel demand across the highway network. The supply of highway network has been based on:

- Roads and Maritime Services (RMS) highway network as used in the STM.

These four data sources are outlined in Table 2.1.
Table 2.1 Strategic model components

Demand / Supply	Data	Class of vehicles	Sources
Demand	Background traffic	Car	STM
	Light commercial vehicle	LCVM	
	Rigid trucks	FMM	
	Articulated trucks (non Port Botany and Moorebank IMT)	FMM	
Supply	Port Botany and		
Moorebank IMT	Articulated trucks	FMM	
Highway Network	All	RMS networks as used in the STM highway assignment	

These data sources have all been developed with the same geographic coverage and modelling zoning system (2006 travel zones) to provide a compatible set of travel demand trip tables. An overview of each of these models is provided in the following sections.

2.2 Sydney Strategic Travel Model

The Sydney Strategic Travel Model (STM) is a State Government model that is owned and operated by BTS an independent entity with TfNSW. The STM has been developed over the last 15 to 20 years to represent the movement of people in Sydney Greater Metropolitan Area (GMA), Newcastle and Illawarra. The study area encompasses nearly 5.5 million people (2010) and represents some 20 million trips on a typical weekday (2010).

The STM is the States Government strategic forecasting tool used to support the evaluation of:

- Major infrastructure changes;
- Different population/employment growth and distribution scenarios;
- Service change;
- Pricing change; and
- Policy change.

The STM currently contains a series of demographic and behavioural models which collectively produce estimates of home based travel by travel purpose. The key attributes of the STM are as follows:

- Travel demand is modelled as person tours
- Tour-based models reflect the relationships and constraints between individual trips in terms of mode and destination choices.
- A tour in the STM is any travel from home to a primary destination and back to home. For example, while most employed people will only have one work tour on a working day, those who return home for lunch will have two tours. The Household Travel Surveys (HTS) indicates that in 92\% of cases, the outward and return leg of a work tour are symmetrical in terms of mode, so for modelling purposes, symmetry is assumed.
- The tours modelled in the STM do not include any side trips made along the way, and any non-homebased tours. For example, someone on the way to work may drop off children at the school, then, during work may go to a meeting at another location then back to the primary work place, and after work may go shopping before returning to home. These side trips are currently modelled in the STM for car driver mode by factoring the tours by purpose using factors based on the HTS.

The model is implemented in two stages as follows:

- Population Model - the population is segmented into groups based on socio-demographics that influence travel choices, as well as on the basis of car ownership and licence holding. These segments are grown into the future based on population, employment and other projections and trends. This segmentation occurs at the model wide level and the travel zone level.
- Travel Model - a series of travel models in EMME have been developed that represent travel by purpose, of travel frequency, mode and destination choice, calibration based on the Journey-to-Work and HTS data, addition of freight movements, and assignment of travel to the road and public transport networks.

The process is further documented in the 'Sydney Strategic Travel Model (STM) - Modelling future travel patterns - February 2011 Release - Bureau of Transport Statistics.

The net result of the process is that the STM together with the LCVM and FMM provide traffic forecasts for vehicles on the road network. This demand is estimated at a 24 hour level and then is allocated to four model time periods as follows:

- AM peak (0700-0900)
- PM peak (1500-1800)
- Inter peak (0900-1500)
- Evening/night time period (1800-0700)

The STM has been supplied to the study from BTS and the assumptions relating to this model are detailed in Appendix A.

The STM was supplied with a 2011 base year and future networks for 2016 to 2041 in five year increments. Table 2.2 lists the changes that the STM road network should contain as per the documentation supplied with the model. It is noted that the form/alignment of some of the projects identified in Table 2.2 may differ from the latest planning documentation and this is because the detailed investigations around these projects are still underway.

Table 2.2: Official network changes

Year	Road	Detail
2016	Hunter Motorway	Four-lane expressway from F3 to Branxton
	M2 widening	Widening from Windsor Road to Delhi Road
	M5 widening	Widening Camden Valley Way to King Georges Road
	Western Sydney Employment Hub	Link Roads to the M7 Motorway
	Great Western Highway widening	Widening the highway to four/three lanes between Emu Plains and Mount Victoria.
	South West Rail Link via East Hills	There are some changes to the road network around Edmondson Park that are likely to be related to this project (i.e. links to rail stations, etc.).
2021	WestConnex Stage 1: M5 East Duplication	Duplication from M5 East to King Georges Road It is noted that the changes included in the 2021 network extend to parts of the WestConnex project beyond the M5 East duplication such as the Sydney Airport Access Link, etc (as per the WestConnex Sydney's next motorway priority, October 2012, RMS document).
	North West Rail Link to Rouse Hill	There are changes to the 2021 model road network around Kellyville which is likely to be associated with this project.
2026	WestConnex Stage 2: M4 Extension and M4 Widening	M4 widening and extension from Parramatta to Haberfield
	NW Growth Centre	The 2026 model road network includes changes to links in the area to the north west of the M7 which are likely to be related to this project.
2031	M2 to F3 Tunnel	Connection between M2 and F3 at Wahroonga
	SW Growth Centre	This is seen in the model as various network changes (i.e. new links, upgraded links, etc) to the west of the Hume Highway and the M7.

The changes between each of the forecast years are shown in Appendix B. However there are changes to the road network which are not covered in Table 2.2 (i.e. not discussed in the documentation provided with the model). The most notable of these changes is the extension of Cambridge Avenue to Campbell Town Road which first appears in 2026 and is also present in the 2031 network. This is the only change that is likely to have a significant bearing on the results of the investigations relating to the Moorebank Intermodal Terminal Development. Discussions with Roads and Maritime Services Indicate that this extension is not currently part of the future 2031 network. Therefore the modelling undertaken for this study has removed this extension from the model network.

2.3 Sydney Light Commercial Vehicle Model

Similar to the STM the Sydney Light Commercial Vehicle Model (LCVM) is owned and operated by BTS an independent entity within TfNSW. The model has been developed ton the same premise as the STM as a strategic forecasting tool used to support the evaluation of transport interventions.

The LCVM produces light commercial vehicle demand based on the Austroads vehicle classes 1 and 2 that relate to light commercial vehicle movements such as delivery vans. The model coverage is the same as the STM and includes the Sydney Greater Metropolitan Area (GMA), Newcastle and Illawarra. The model is calibrated to a 2011 base year, and produces forecasts at five yearly intervals to 2046. To maintain consistency, the LCVM is based around the 2006 travel zone system and utilises the same population and employment data as the STM.

The LCVM is based on a trip attraction / production modelling combined with a trip distribution model. The trip attraction model is based on the zonal level details for

- household forecasts based on August 2012 Release: BTS Population Forecasts
- employment forecasts based on August 2012 Release: BTS Employment Forecasts
- trip attraction rates for households, office, industrial, retail and hospitality based on Service Vehicle Attraction Rate study, 1999 (SVAR)and the LCV Trip Attraction Rates study, 2009 (LTAR)

The trip production is based on assuming the over a 24 hour period that each zones produces the same numbers as it attracts. The trip distribution model is based on a gravity model that uses the trips attracted and produced by each zone in conjunction with a friction factor that combines travel times with calibrated parameters that align with the trip distribution observed in the base year. The 24 hour trip matrices are converted to the four model periods based factors derived from the LCV Trip Attraction Rates study, 2009 (LTAR).

Table 2.3 Time period factors in LCVM

	AM peak $(0700-0900)$	Inter peak $(0900-1500)$	PM peak $(1500-1800)$	Evening / Night Time (1800-0700)
Proportion of 24 hour demand	0.16	0.61	0.13	0.10

Due to the nature and to some extent ambiguities of LCVs, there is a risk of double-counting, since the STM car demand actually includes 'some' LCV trips in its estimates of total travel movements, through the data provided from the Household Travel Survey (HTS). While this HTS data for LCVs provides a wealth of detailed information for use in the STM, it does not necessarily provide the most accurate estimate of total LCV movements. Fundamentally, the HTS sample is household (not business) based and the survey expansion variables used are designed to optimize the accuracy of trips for personal (not business) travel. With the February 2014 release of LCVM forecasts, BTS compared the 2011 base year LCVM estimates with HTS estimates. The key finding from this analysis was that, for 2011, the HTS captured 35% of total LCV movements. As a result, the LCVM estimates should be factored by 0.65 (65\%) to take into account the overlap in travel demand in the LCVM matrices with the STM car demand. Further details of the LCVM as provided by BTS are provided in Appendix A.

2.4 Sydney Freight Movement Model

Similar to the STM the Sydney Freight Movement Model (FMM) is owned and operated by BTS an independent entity within TfNSW. The model has been developed ton the same premise as the STM as a strategic forecasting tool used to support the evaluation of transport interventions.

The FMM produces heavy commercial vehicle demand based on the splitting demand between rigid and articulated vehicles. The model coverage is the same as the STM and includes the Sydney Greater Metropolitan Area (GMA), Newcastle and Illawarra. The model is calibrated to a 2011 base year, and produces forecasts at five yearly intervals to 2036. To maintain consistency, the FMMs based around the 2006 travel zone system and utilise the same employment data as the STM.

The FMM consists of a number of sub-models as follows:

- Production (and consumption) models which estimate freight produced (and consumed) based on employment and other data.
- A two stage distribution model which estimates freight movements based upon distribution patterns between industry classes, and then between freight areas based on accessibility (employment and travel time).
- Freight vehicle trip models which estimate the number of trips of different mode types given this freight distribution.
- Vehicle assignment model based on assigned the vehicle demand onto the STM network, which estimate the volume of freight vehicles on road sections, given the freight vehicle trip distribution.

The assignment to the road network is based on allocating loads to either rigid or articulated heavy vehicles, which are then assigned to the road network. This method is used for the estimating of heavy goods movements across the strategic model area except for special generators.

The method is revised for special generators such as Port Botany. The movement of freight to and from Port Botany is driven by the growth of import and export activities which is projected to rise at rates above those for general freight movements. This has been recognised in the FMM together with the role of intermodal terminals have in servicing the movement of freight to and from Port Botany. The operation of Ports are typically measured in twenty-foot equivalent unit (TEUs) containers, with Port Botany set to expand from its current 2 million TEUs in financial year 2011/12 to over 7 million TEUs by 2031.

The assumed Port Botany of freight vehicle split between rigid and articulated, the level of back-loading and TEU's per truck are shown in Table 2.4.

Table 2.4 Vehicle characteristics - Port Botany

Vehicle characteristics	2011	2021	2031	2041
Rigid vehicle (\% of Total HV)	9%	9%	9%	9%
Articulated vehicle (\% of Total HV)	91%	91%	91%	91%
Back-loading	11.3%	13.8%	16.3%	18.8%
TEUs/Truck (laden movements)	2.04	2.14	2.16	2.18
TEUs/Rigid	1.00	1.00	1.00	1.00
TEUs/Articulated	2.14	2.25	2.27	2.30

The assumed level of daily operation and split of movements over the day for Port Botany in the FMM are shown in Table 2.5.

Table 2.5 Operational characteristics - Port Botany

Operational characteristics	2011	2021	2031	2041
Annual Operational Days	303	313	323	333
AM peak (0700-0900)	13.3%	13.3%	11.9%	9.2%
Inter peak (0900-1500)	41.1%	41.1%	37.3%	27.6%
PM peak (1500-1800)	15.0%	17.1%	16.8%	13.8%
Night time (1800-0700)	30.6%	28.6%	34.0%	49.4%

Port Botany is assumed to be serviced by rail using the following inter modal terminals, and the FMM also includes the other IMT (in addition to Moorebank):

- Minto (TZ2006 = 1261)
- Yennora $($ TZ2006 $=1826)$
- Enfield $($ TZ2006 $=1598)$
- Moorebank (TZ2006 = 1120)
- Eastern Creek $($ TZ2006 $=2185)$

The locations of these zones in the model is shown in Figure 2.1.

Figure 2.1: Intermodal terminals
The articulated truck demand to and from the intermodal terminals in the FMM is shown in Table 2.6. The Moorebank IMT has significantly more truck movements than any of the other IMT's with Eastern Creek having the second highest volume of freight movements.

Table 2.6: $\quad 2031$ FMM articulated truck totals to/from intermodal terminals

Site	Movement	$\begin{aligned} & \text { AM peak } \\ & \text { (0700-0900) } \end{aligned}$	$\begin{aligned} & \text { Inter peak } \\ & \text { (0900-1500) } \end{aligned}$	$\begin{aligned} & \text { PM peak } \\ & \text { (1500-1800) } \end{aligned}$	Evening / Night Time (1800-0700)	Daily Total
Minto	From	28	94	40	76	238
	To	29	97	39	79	244
Yennora	From	28	96	36	77	237
	To	25	88	39	70	222
Enfield	From	10	33	13	26	82
	To	9	33	14	27	82
Eastern Creek	From	44	151	60	121	376
	To	43	144	61	122	371
Moorebank	From	136	466	194	372	1,168
	To	139	476	190	379	1,184

Figures 2.2 and 2.3 show the distribution of articulated trucks from each of the intermodal terminals (IMT's) in the AM and PM peaks respectively in the FMM. These figures show that there is some overlap between the IMT catchments; Moorebank and Minto are the first and second most popular origins/destinations for freight in the model respectively. Freight movements to/from other intermodal terminals are significantly lower.

Figure 2.2: Distribution of articulated truck trips from the IMT's in 2031 AM peak

Figure 2.3: Distribution of articulated truck trips from the IMT's in 2031 PM peak

2.5 Summary of strategic models

The strategic models provided by BTS have been reviewed to identify the scale of trip making related to the model has a whole and specifically related to the movements to/from the zones representing the Moorebank IMT and Port Botany zones (i.e. Zone 1120 represents the Moorebank IMT and zones 426 and 556 represent Port Botany).

The scale of the trips for car, LCV, rigid and articulated trucks for the whole of the model and for movements to and from Moorebank and Port Botany are shown in Tables 2.6 to 2.9.

Table 2.7 STM Car/LCV trips in 2031

Movement	AM peak $(0700-0900)$	Inter peak $(0900-1500)$	PM peak $(\mathbf{1 5 0 0 - 1 8 0 0)}$	Evening / Night Time $(\mathbf{1 8 0 0 - 0 7 0 0)}$	Daily Total
Total Trips	$2,419,566$	$4,591,602$	$3,738,389$	$3,473,856$	$14,223,413$
From Moorebank	153	756	1,433	870	3,212
To Moorebank	1,246	861	335	774	3,216
From Port Botany	120	792	1,757	1,035	3,704
To Port Botany	1,584	948	302	858	3,692

Table 2.8 LCV trips in 2031

Movement	AM peak $(0700-0900)$	Inter peak $(0900-1500)$	PM peak $(1500-1800)$	Evening / Night Time $(\mathbf{1 8 0 0 - 0 7 0 0)}$	Daily Total
Total Trips	171,851	655,183	139,629	105,658	$1,072,320$
From Moorebank	84	320	68	53	524
To Moorebank	83	320	69	50	522
From Port Botany	99	378	80	63	619
To Port Botany	97	380	81	63	620

Table 2.9 FMM Rigid truck trips in 2031

Movement	AM peak $(0700-0900)$	Inter peak $(0900-1500)$	PM peak(1500- $1800)$	Evening / Night Time $(1800-0700)$	Daily Total
Total Trips	45,391	147,390	57,329	81,411	331,521
From Moorebank	60	323	125	177	684
To Moorebank	101	329	126	183	738
From Port Botany	95	263	132	402	891
To Port Botany	119	389	149	212	868

Table 2.10 FMM Articulated truck trips in 2031

Movement	AM peak $(0700-0900)$	Inter peak $(0900-1500)$	PM peak $(1500-1800)$	Evening / Night Time $(1800-0700)$	Daily Total
Total Trips	17,463	59,203	24,377	48,956	149,998
From Moorebank	136	466	194	373	1,168
To Moorebank	139	476	190	379	1,184
From Port Botany	786	2,187	1,097	3,344	7,414
To Port Botany	836	2,860	1,209	2,287	7,192

The daily distribution of origins and destinations for articulated trucks to and from Moorebank and Port Botany as represented in the 2031 FMM matrices are shown in Table 2.10. The distribution of articulated trucks to and from the Moorebank zone in the FMM is localised and generally relates to locations within 2 to 3 kilometres of the intermodal terminal. The distributions of articulated trucks to and from the Port Botany zone in the FMM has a wider distribution (than for Moorebank) across the greater Sydney area, and many of the articulated truck trips travel between the industrial precinct at Wetherill Park (just north of Moorebank IMT) and Port Botany.

Table 2.11: FMM Distribution of articulated truck trips tolfrom Port Botany and Moorebank
To Moorebank

To Port Botany

From Moorebank

From Port Botany

3. Articulated truck demand

3.1 Introduction

The strategic models provide the framework for the analysis of the strategic traffic changes relating to the provision of the Moorebank Intermodal Terminal Project.

Deloitte were commissioned to undertake the task of determining the impact of the opening of Moorebank Intermodal terminal and assess the resulting articulated truck movements to and from Port Botany and Moorebank. To carry out this task Deloitte employed economic modelling to project future import and export demand and distribution across the Sydney metropolitan area. The information supplied related to the following scenarios:

- 'Base Case' : Port Botany operating without Moorebank Intermodal Terminal
- 'Project Case’ : Port Botany operating without Moorebank Intermodal Terminal

The level of import and export activity is outlined below together with the related truck movements.

3.2 Import and export demand

The assumed level of import and export activity on the road network related to the port and Moorebank Intermodal Terminal is summarised in Table 3.1.

Table 3.1 Import and export demand road based TEUS/year

Scenario	2018	2020	2025	2030	2035	2040
'Base Case'						
Port Botany	$1,574,677$	$1,787,546$	$2,414,936$	$3,206,501$	$4,205,204$	$5,465,247$
'Project Case'	$1,468,186$	$1,368,107$	$1,366,106$	$2,157,671$	$3,156,374$	$4,416,417$
Port Botany	106,491	419,439	$1,048,830$	$1,048,830$	$1,048,830$	$1,048,830$
Moorebank	$1,574,677$	$1,787,546$	$2,414,936$	$3,206,501$	$4,205,204$	$5,465,247$
Total						
Supplied by Deloitte - Appendix C provides the distribution of TEU locations by Local Government Area						

This demand is assumed to be distributed on to the road network with both Port Botany and Moorebank operating 7 days per week and for 50 weeks a year resulting in yearly TEUs being divided by 350 to give daily operations.

The level of TEUs shown in Table 3.1 were then converted to truck movements based on allocating loads to articulated and B-Double trucks. This was undertaken by Deloitte's and supplied to Parsons Brinckerhoff in the form of truck movements specific to Port Botany and Moorebank for the 'Base Case' and 'Project Case' scenarios as shown in Table 3.2.

Table $3.2 \quad$ Daily Truck Movements - Round Trips

Scenario	Vehicle Type	2018	2020	2025	2030	2035	2040
'Base Case'							
Port Botany	Semi-trailer	1,566	1,892	2,402	3,190	4,183	5,436
	B-Double	696	790	1,068	1,418	1,859	2,416
	Total	2,262	2,682	3,470	4,608	6,042	7,852
'Project Case'							
Port Botany	Semi-trailer	1,460	1,361	1,359	2,146	3,140	4,393
	B-Double	649	605	604	954	1,395	1,953
	Total	2,109	1,966	1,963	3,100	4,535	6,346
Reduction to Port Botany		153	716	1,507	1,508	1,507	1,506
Moorebank	Semi-trailer	127	499	1,248	1,248	1,248	1,248
	B-Double	21	83	208	208	208	208
	Total	148	582	1456	1456	1456	1456
Total	Semi-trailer	1,587	1,860	2,607	3,394	4,388	5,641
	B-Double	670	688	812	1,162	1,603	2,161
	Total	2,257	2,548	3,419	4,556	5,991	7,802

Supplied by Deloitte, Appendix C provides the distribution of daily truck movements by Local Government Area Note: 1 round trip results in the trip matrices of 1 trip to the site and 1 trip from the site.

The forecast truck movements supplied by Deloitte does not align with the strategic model years and therefore the demand in Table 3.2 for 2030 and 2035 has been interpolated to estimate truck movements in 2031. Since the Moorebank Intermodal Terminal import and export movements remain unchanged from 2025 the interpolation only applies to movements relating to Port Botany. The daily truck movements in Table 3.2 have been incorporated as articulated trips within the FMM trip matrices for the assignment process by replacing the original trips with the quantum and distribution defined by Deloitte. The remaining articulated trip movements remain unchanged.

3.3 Interstate demand

The Moorebank Intermodal Terminal is assumed to capture the interstate movements from Chullora once it closes from 2030 onwards. In the 'Base Case' it is assumed that Chullora continues to operate with a capacity of 350,000 TEUs per annum. In the 'Project Case' case it is assumed that Chullora closes from 2030 and that the freight activities transfer to Moorebank. The level of truck trips related to the transfer of the interstate traffic to Moorebank is as follows:

- 410 daily truck movements in 2030
- 430 daily truck movements in 2035
- 460 daily truck movements in 2040

The road based freight trips that service Chullora are assumed to move to Moorebank with the distribution remaining the same as those used in the FMM when Chullora was operational.

3.4 Background traffic

Other vehicles utilise and impact on the operation of the road network. This is known as the background traffic since it does not change with respect to the 'Base Case' and 'Project Case' scenarios. This traffic is comprises cars, LCVs, rigid and articulated goods vehicles. This traffic has been sourced from the STM, LVC and FMM trip matrices and is assigned to the road networks provided.

3.5 Time profile

The strategic modelling for the project has utilised the time periods that are compatible with the STM structure which is based on modelling the travel demand for the following four time periods:

- AM peak (0700-0900)
- PM peak (1500-1800)
- Inter peak (0900-1500)
- Evening/night time period (1800-0700)

The Moorebank Intermodal Terminal is expected to operate 24 hours per day from 2030 onwards.
To distribute the total daily volume of IMEX traffic to/from Port Botany and Moorebank specified by Deloitte across the four model time periods, it was assumed that these distributions would follow the same pattern as IMEX traffic to/from Port Botany across the time periods in the FMM model (see Table 3.3).
Table 3.3 FMM distribution of articulated trips to/from Port Botany across time periods

	AM Peak	Inter-peak	PM Peak	Evening period
From Port Botany	11%	29%	15%	45%
To Port Botany	11%	40%	17%	32%

Interstate traffic was assumed to have a uniform hourly arrival/departure profile. This was due to the longer distances that interstate trucks are required to travel and the greater likelihood that the arrival/departure of these trucks would be more random (and therefore equally likely to occur at any time of the day) than traffic travelling from within the Sydney area.

Background traffic is assumed to have the time profiles as defined in the strategic models.

3.6 Truck distributions for Port Botany and Moorebank

The truck distribution for the movement of freight to Port Botany and Moorebank as presented in Tables 3.1 and 3.2 is based on the following assumptions.

- Import and export movements are to be based on the demand split defined by Deloitte for each of the Local Government Areas (LGA) within the Sydney Greater Metropolitan Area (GMA).
- For the six of the LGA's with the highest proportion of trips to/from Moorebank (i.e. Penrith, Blacktown, Liverpool, Fairfield, Campbelltown and Camden) a further breakdown by postcode was provided by Deloitte. Details of this breakdown by postcode are provided in Appendix D.
- Within each LGA (or postcode where provided) it is assumed that the trips are spread across each of the Travel Area Zones (TAZ) in line with the FMM distribution.
- Interstate trucks are assumed to have the ultimate trip end (origin/destination) that reflect the FMM forecast share for the Chullora facility.

The daily distribution of truck movements to and from Port Botany in the 'Base Case' scenario is shown in Table 3.4, while for the 'Project Case' scenario is shown in Table 3.5 and 3.6 for Port Botany and Moorebank. These distributions relate to the movement of truck trips to the strategic model zone.

Table 3.4: 'Base Case’ articulated truck distributions tolfrom Port Botany
From Port Botany

To Port Botany

Table 3.5: 'Project Case' articulated truck distributions tolfrom Port Botany
From Port Botany

To Port Botany

Table 3.6: 'Project Case' articulated truck distributions to/from Moorebank
From Moorebank

To Moorebank

4. Strategic network performance

4.1 Introduction

Performance of the strategic network in the 'Base Case' and 'Project Case' scenarios has compared using the following metrics:

- Network wide performance based vehicle kilometres and hours travelled
- Key corridor flows on the following roads:
- M5 Motorway
- M2 Motorway
- M7 Motorway
- Foreshore Road / Botany Road
- Pennant Hills Road
- M1 Motorway (to Newcastle)
- General Holmes Drive
- Hume and Cumberland Highway

The key corridors are shown in Figure 4.1.

4.2 Network performance

The performance of the whole network can be assessed by considering the vehicle kilometres and hours travelled in each of the assignments by the users of the road network. Table 4.1 and 4.2 compares the vehicle kilometres travelled (VKT) and vehicle hours travelled (VHT) across the modelled network by class of vehicle and time period for the 'Base Case' and 'Project Case'.

The results in indicate that:

- the 'Project Case' results in a decrease in both VKT and VHT across the network as a whole compared to the 'Base Case', with most of the reductions seen in articulated truck movements. Although articulated truck trips to and from Port Botany see the greatest reduction in VKT and VHT, other (i.e. background) articulated truck traffic are also expected to see decreases in VKT and VHT under the 'Project Case'.
- on an average weekday the implementation of the 'Project Case' results in a reduction of 45,460 vehicle kilometres travelled and 3,800 vehicle hours travelled by all vehicles across the network
- on an average weekday the implementation of the 'Project Case' results a reduction of articulated truck vehicle kilometres travelled of 36,185 and 670 fewer vehicle hours travelled.
- assuming that Port Botany and Moorebank operate for 350 days per year this is an annual reduction of $12,665,365$ vehicle kilometres and 234,160 vehicle hours travelled by articulated trucks to and from Port Botany and Moorebank. (This annual savings calculation is an approximation based on applying the calculation of savings on an average weekday to 350 days, but it is noted that only a maximum of 260 will be working days. However it is not possible to determine the impact of the project on non-working days as the strategic models are setup to model an average weekday.)

It is noted that while there appears to be a slight increase in VKT for rigid trucks and cars/LCV under the 'Project Case', these modes see reductions in VHT under the 'Project Case'. This is likely to be the result of rerouting of car/LCV and rigid truck movements in the 'Project Case' scenario model to use routes that are longer but require less time.

Figure $4.1 \quad$ Strategic assessment corridors

Table 4.1 Comparison of vehicle kilometres travelled in 2031

Scenario		AM peak (0700-0900)	$\begin{gathered} \text { Inter peak } \\ (0900-1500) \end{gathered}$	PM peak (1500-1800)	Evening / Night Time (1800-0700)	Daily Total
'Base Case'						
Back'd	Cars/LCV	26,372,160	44,427,270	35,339,960	32,255,885	138,395,280
	Rigid	1,081,310	3,498,060	1,365,460	1,948,635	7,893,460
	Articulated	707,500	2,412,920	984,585	1,936,065	6,041,070
Port Botany	Articulated	42,840	134,645	61,155	149,670	388,310
'Project Case'						
Back'd	Cars/LCV	26,373,920	44,430,700	35,342,360	32,258,965	138,405,950
	Rigid	1,081,410	3,498,000	1,365,575	1,948,265	7,893,250
	Articulated	705,055	2,406,070	981,100	1,929,115	6,021,335
Port Botany	Articulated	28,335	89,135	40,480	98,745	256,690
Moorebank	Articulated	28,335	89,135	40,480	98,745	256,690
Difference relative to 'Base Case'						
Back'd	Cars/LCV	1,760	3,430	2,400	3,080	10,670
	Rigid	100	-60	115	-365	-205
	Articulated	-2,450	-6,845	$-3,485$	-6,955	-19,735
Port Botany	Articulated	-14,510	-45,510	-20,675	-50,925	-131,620
Moorebank	Articulated	10,785	33,425	15,610	35,615	95,430
Total	Cars/LCV	1,760	3,430	2,400	3,080	10,670
	Rigid	100	-60	115	-365	-205
	Articulated	-6,170	-18,930	-8,550	-22,265	-55,920

Table 4.2 Comparison of vehicle hours travelled in 2031

Scenario		AM peak (0700-0900)	Inter peak (0900-1500)	$\begin{aligned} & \text { PM peak } \\ & (1500-1800) \end{aligned}$	Evening / Night Time (1800-0700)	Daily Total
'Base Case'						
Back'd	Cars/LCV	958,400	1,131,115	1,115,095	715,835	3,920,445
	Rigid	32,640	77,245	36,215	37,615	183,710
	Articulated	15,945	43,075	20,095	31,240	110,355
Port Botany	Articulated	1,440	2,950	1,695	2,830	8,910
'Project Case'						
Back'd	Cars/LCV	957,520	1,130,495	1,114,420	715,480	3,917,915
	Rigid	32,610	77,185	36,180	37,585	183,565
	Articulated	17,205	45,670	21,590	33,685	118,145
Port Botany	Articulated	940	1,920	1,105	1,835	5,800
Moorebank	Articulated	390	820	485	740	2,440
Difference relative to 'Base Case'						
Back'd	Cars/LCV	-880	-620	-675	-355	-2,530
	Rigid	-30	-60	-30	-25	-145
	Articulated	-75	-150	-95	-130	-450
Port Botany	Articulated	-495	-1,030	-590	-995	-3,110
Moorebank	Articulated	390	820	485	740	2,440
Total	Cars/LCV	-880	-620	-675	-355	-2,530
	Rigid	-30	-60	-30	-25	-145
	Articulated	-180	-355	-200	-385	-1,120

Figure 4.2 shows the change in articulated truck volumes on the network between the 'Project Case' and the 'Base Case'. This plot shows that the introduction of the Moorebank Intermodal Terminal:

- would result in reductions in articulated truck volumes through the Sydney CBD and inner city suburbs, on the M4 and the M5 east of the Moorebank Avenue interchange.
- would result in an increase in articulated truck flows, particularly on the M7, Hume Highway and Mamre Road south of the M4 as well as the M5 between Moorebank avenue interchange and the M7.

Figure 4.3 shows the net difference of articulated truck volumes relating to Port Botany and Moorebank only on the network. Comparing this to Figure 4.2 confirms that the changes in articulated truck volumes on the network are generally the result of changes at Port Botany and Moorebank; the changes to background articulated truck traffic is not significant.

Appendix E shows the change in articulated truck movements to/from Port Botany and Moorebank between the 'Base Case and the 'Project Case 'scenarios on corridors of interest. In general:

- The reductions in truck movements are generally experienced closer to the Sydney CBD (i.e. the M5 east of Moorebank Avenue, General Holmes Drive, Foreshore Road as well as the M2)
- The increases in truck movements are mostly seen in the corridors immediately around the Moorebank development (i.e. M7 south of the M4, and the Hume Highway).
- Some of the increases in truck movements (such as the increase on the M1 to Newcastle) are due to the shift of some articulated truck movements from Chullora to Moorebank in the Project Case (to account for the shift of interstate traffic to Moorebank from Chullora in 2031).

Figure 4.4 shows the contribution of Moorebank-traffic to total articulated truck flows on the network. As expected Moorebank traffic makes up a large portion of all articulated truck movements on parts of the network closer to Moorebank and in some cases closer to the other origin/destination zone. Moorebank traffic accounts for up to 20% of the articulated truck volumes on the M7 and up to 34% of the articulated truck traffic on the Hume highway

The Figures in Appendix F show the change in speed between the 'Base Case and 'Project Case' scenarios for each of the model time periods. In general the road links with reduced volumes (as per Figure 4.2) experience improved travel speeds in the 'Project Case' than the base case and conversely roads that see increased articulated truck movements in the "Project Case' experience degraded travel speeds in the 'Project Case' than the 'Base Case'. It is noted that the change in speed is small, with a maximum change of about $4 \mathrm{~km} / \mathrm{hr}$ on the wider network (the road links closer to Moorebank experience greater changes; up to 8 $\mathrm{km} / \mathrm{hr}$). This is to be expected as the changes attributed to the project would only have a small impact on a network as large as the Sydney road network.

Figure 4.2: Comparison of articulated truck volumes ('Project Case' versus 'Base Case')

Figure 4.3: Comparison of articulated truck volumes to/from Port Botany and Moorebank only ('Project Case' versus 'Base Case')

Figure 4.4 Percentage of articulated truck traffic tolfrom Moorebank (of all articulated truck flows on links - 'Project Case')

Appendix A

Strategic modelling assumptions

A1. Sydney Strategic Travel Model

The Sydney Strategic Travel Model (STM) was supplied to the project with the following documentation of the key assumptions. These assumptions have been reproduced from information supplied by BTS.

A1.1 Model version

STM 2.5 based on the calculation of travel demand using 7 travel purposes, 7 travel modes, 2690 travel zones, 4 times of day) The purposes and modes are as follows:

Travel purposes:

- Work (commute from home to work and back)
- Business
- Primary education
- Secondary education
- Tertiary education
- Shopping
- Other

Travel mode

- Car driver
- Car passenger
- Train / Light rail / Ferry
- Bus
- Cycle
- Walk
- Taxi

The four time periods modelled are as follows:

- AM peak period (0700-0900)
- Inter peak period (0900-1500)
- PM peak (1500-1800)
- Evening/night time period (1800-0700)

A1.2 Network assumptions

The STM network is based on the Long Term Transport Master Plan and includes the following changes in the supply network. Assumptions are for scenario modelling purposes and do not necessarily reflect Government policy).

Table A1.1 Network assumptions

Year	Road	Rail / Light Rail	Bus / Ferry
2006	- Network version July 2009	- Network version ITIS March 2007	- Network version ITIS March 2007
2011	- Lane Cove Tunnel - Inner West Busway (Iron Cove Bridge duplication) - F3 widening - Hume Highway widening	- Enhanced 2009 timetable network - Cronulla duplication - ECRL	- 131500 bus network and 2011 ferry network
2016	- Hunter Motorway (F3Branxton) - M2 widening - M5 widening - W-Sydney Employment Hub - Gt.Western Highway widening	- SWRL via East Hills - LRT Dulwich Hill extension	- Bus route adjustments in SWRL sector, revised ferry network for 2016
2021	- WestConnex Stage 1: M5 East Duplication	- North West Rail Link to Rouse Hill - CBD and South East Light Rail	- CBD Bus plan, Regional level 1 and level 2 bus network, bus route adjustments in NWRL
2026	- WestConnex Stage 2: M4 Extension and M4 Widening NW Growth Centre	- 2021 heavy rail base (20 trains/h over SHB and City Circle)	and SWRL sectors, bus priority, - revised ferry network
2031	- M2 to F3 Tunnel - SW Growth Centre	- 2021 heavy rail base (20 trains/h over SHB and City Circle)	
2036	- F6 - NW Growth Centre	- 2036 heavy rail base (20 trains/h over SHB and City Circle)	
2041	- M2 extension via Gladesville Bridge to M4 East Spit bridge upgrade	- 2036 heavy rail base (20 trains/h over SHB and City Circle)	
All years Travel Costs	- Fuel and toll costs rise with CPI	- MyZone fare system - Fares rise with CPI, light rail treated as heavy rail for fare calculation purpose	- MyZone fare system - Fares rise with CPI

A1.3 Land use assumptions

Table A1.2 Land use assumptions

Year	GMA Population - Aug 2012 BTS Forecasts	GMA Employment - Aug 2012 BTS Forecasts
2006	$5,133,000$	$2,467,000$
2011	$5,578,000$	$2,685,000$
2016	$5,961,000$	$2,904,000$
2021	$6,331,000$	$3,095,000$
2026	$6,705,000$	$3,271,000$
2031	$7,077,000$	$3,432,000$
2036	$7,443,000$	$3,595,000$
2041	$7,805,000$	$3,752,000$
2046	$8,165,000$	$3,901,00$

A1.4 Heavy vehicle demand assumptions

BTS Freight Movement Model (FMM) - Freight Forecast December 2013 release.

A1.5 Behavioural assumptions

- Behavioural models estimated using Household Travel Survey data up to and including 2008 and Journey to Work data up to and including 2006 Census.
- Assumed 1\% growth in real income per annum
- Travel behaviour responses to times, costs and modes within synthetic household classes (128 different types) assumed not to vary over time, although the number of people within each household class will vary along with demographic change and socio-economic change.

A1.6 Cautions

- Aside from acknowledging that these forecasts are the product of the set of assumptions listed above, none of which may occur in reality, and which may not reflect government policy, users should also be aware of some other limitations inherent in Strategic Travel Models such as the STM:
- The STM is a simplification of reality. It breaks the GMR into 2,690 travel zones, and further by 128 population segments within each travel zone. These 350,000 segments by travel zone represent over 5 million people in the GMR, and thus involve using averages and simplifying assumptions to predict behaviour and access to the transport system.
- The STM does not currently apply a capacity constraint on public transport use. What this means is that in effect, each public transport vehicle is infinitely large. It is possible to identify where services are over capacity by dividing predicted demand by known supply. The BTS believes that the most likely response to congestion on public transport is a shift of travel time, not of mode, thus it stands by the STM's 2 or 3.5 hour peak estimates of travel demand by mode.
- Whilst the STM has been validated to ensure that it reproduces reasonable estimates of current travel behaviour, it has not been calibrated to match base year travel in this implementation.

A1.7 Fitness for purpose

The STM is a strategic multi-modal modelling tool incorporating the latest population and employment forecasts. The STM has been successfully used to inform evidence-based policy development and decisionmaking in strategic, metropolitan scale land use and transport scenario modelling projects.

For specific projects, the STM results should be used as a starting point to produce estimates of overall demand in response to alternative land use and/or transport supply scenarios. However, the STM, due to its limitations as a strategic modelling tool, may need to be supplemented with more detailed analyses for project evaluation purposes.

A2. BTS Light Commercial Vehicle forecasts - February 2014 release

A2.1 Introduction

This report documents the methodology and output of the February 2014 Release Bureau of Transport Statistics (BTS) Light Commercial Vehicle Forecasts. The methodology and output of the February 2014 Release BTS Heavy Vehicle Forecasts are documented in a separate report.

For the purposes of these forecasts, Light Commercial Vehicles (LCVs) refer to Class 1 or 2 vehicles under the Austroads vehicle classification system, but excluding bicycles and motorcycles (see Figure A2.1). The base and forecast year trip estimates relate solely to usage of LCVs for load-bearing commercial activities and services. This includes direct movements of goods for commercial purposes ('Light Goods Vehicles'), and movements of goods which are used for commercial operations but are not themselves for sale e.g. tools of trade ('Service Vehicles'). Movements of an LCV for personal reasons are excluded, irrespective of whether goods or tools of trade are carried.

AUSTROADS Vehicle Classification System

Figure A2.1 Austroads Vehicle Classification System

A2.2 Methodology

The BTS light commercial vehicle forecasts are produced from the Light Commercial Vehicle Model (LCVM). The LCVM produces base year and forecast estimates of LCV travel movements for the Sydney Greater Metropolitan Area (GMA) at travel zone level. For the February 2014 Release, the base year is changed from 2006 to 2011 and the forecasts are at five yearly intervals to 2046 (including 2006). The zonal system used is BTS's 2006 Travel Zones.

A2.2.1 Trip Attraction

The methodology for estimating LCV movements is based on LCV attraction rates i.e. the rate of attraction of LCVs to (1) households and (2) businesses, measured by the number of employees. These attraction rates are applied to the number of households and amount of employment in each travel zone to obtain the total number of LCVs attracted to the zone i.e.

LCV trips attracted to zone = Trips attracted to households in zone + Trips attracted to businesses in zone , where

Trips attracted to households in zone = the number of households in zone LCV attraction rate for households, and

Trips attracted to businesses in zone $=$ the amount of employment in zone LCV attraction rate for businesses

To estimate trip attractions for the February 2014 Release Light Commercial Vehicle Forecasts, the following household and employment forecasts were used:

- Household forecasts - the August 2012 Release BTS Population Forecasts (which includes household forecasts).
- Employment forecasts - the August 2012 Release BTS Employment Forecasts.

The attraction rates used were based on two BTS studies of LCV attraction rates: the Service Vehicle Attraction Rate study (SVAR, 1999) and the LCV Trip Attraction Rates study (LTAR, 2009). For households, a single household attraction rate was used. For businesses, there were separate attraction rates used for the categories 'Office', 'Industrial', 'Retail' and 'Hospitality', as the SVAR study had established that there were significantly different attraction rates for these broad categories. The linkage between ANZSIC industry classes and these categories is shown in Table A2.1 below.

Table A2.1 LCV Business Attraction Rate Categories

ANZSIC Code	ANZSIC Description	LCV Attraction Rate Category
A	Agriculture, Forestry and Fishing	Industry
B	Mining	Industry
C	Manufacturing	Industry
D	Electricity, Gas, Water and Waste Services	Industry
E	Construction	Industry
F	Wholesale Trade	Industry
G	Retail Trade	Retail
H	Accommodation and Food Services	Hospitality
I	Transport, Postal and Warehousing	Industry

J	Information Media and Telecommunications	Office
K	Financial and Insurance Services	Office
L	Rental, Hiring and Real Estate Services	Office
M	Professional, Scientific and Technical Services	Office
N	Administrative and Support Services	Office
O	Public Administration and Safety	Office
P	Education and Training	Office
Q	Health Care and Social Assistance	Office
R	Arts and Recreation Services	Office
S	Other Services	Office

The attraction rates used for the February 2014 Release forecasts are shown in Table A2.2 below.

Table A2.2: LCV Attraction Rates

Rate	Value	Unit
Household Attraction Rate	0.188	Per household per weekday
Business Attraction Rate (Office)	0.115	Per employee per weekday
Business Attraction Rate (Industrial)	0.237	Per employee per weekday
Business Attraction Rate (Retail)	0.319	Per employee per weekday
Business Attraction Rate (Hospitality)	0.177	Per employee per weekday
Source: SVAR\<AR		

Once trip attractions are established, we apply a factor to allow for 'dead running'. A dead running trip is the 'away' trip from an initial trip made for commercial purposes. It most commonly refers to cases where freight is delivered to a location, and the freight carrying vehicle then returns empty to its original loading location. However, for consistency, BTS also applies the concept to light goods and service vehicle movements. If a plumber, say, travels to a household to do work, the subsequent trip away from the household is regarded as having been generated by the initial trip to the household.

It is important to understand that the dead running factor is not simply double the number of trips attracted to a household or business i.e. that it is not the case that for every trip attraction there is a concomitant away trip. The following example shows why this is so.

1

Figure A2.2 An example of LCV Vehicle tour
In this example, there are three trips. Our same plumber, say, travels from his base to do work at a household. He then travels to another household to do work, then travels back to base. There are thus two trips attracted to households for commercial purposes. If we were to apply the simple assumption that every trip attraction generated a concomitant away trip, we would estimate that four trips resulted from these two attractions, which is obviously wrong. This is because the 'away' trip from the first household (Trip 2) is actually an attraction to the second household, and to count it solely as an away trip can lead to doublecounting. Thus, for this example, the dead running factor is actually 0.5 i.e. the total number of trips $=$ total trip attractions (2) * $(1+0.5)=3$.

The actual dead running factor for LCVs used in the February 2014 Release was 0.5 . This was calculated by examining data from BTS's Household Travel Survey (HTS). The HTS provides detailed information on all trips made by a respondent in a day, and includes data from respondents driving LCVs for commercial purposes. As a result, it was possible to analyze the tour patterns for LCV drivers and quantify the average amount of dead running.

A2.2.2 Trip production

To produce a zonal origin-destination matrix, it is necessary to estimate the number of trips produced (i.e. generated) from a zone in addition to estimating the number of trips attracted to the zone. Currently, BTS has no production rate data to complement its attraction rate data for LCVs. As a result, it used the assumption that within a 24 hour period the number of LCV trips produced from a zone is identical to the number attracted.

A2.2.3 Trip distribution

Once LCV trip productions and attractions have been estimated for each travel zone, the movements between zones (i.e. the origin-destination matrix) are estimated using a gravity model. Unlike the BTS heavy vehicle origin-destination matrices, the LCV matrix is not adjusted by a matrix estimation process. Matrix estimation uses counts of vehicles on the road network to produce a 'maximum likelihood' estimation of vehicle movements based on observed data. For heavy vehicles, BTS has undertaken a number of classified count studies to obtain such counts for rigid and articulated trucks, and consequently is able to use matrix estimation to estimate its heavy vehicle origin-destination matrices. However, equivalent counts for LCVs are not available, and as a result the matrix estimation process cannot be applied to the LCV origin-destination matrices.

$$
T_{i j}=T_{i} \times \frac{A_{j} \times F F_{i j}}{\sum A_{j} \times F F_{i j}}
$$

Where:

$$
T_{i j}=T_{i} \times \frac{A_{j} \times F F_{i j}}{\sum A_{j} \times F F_{i j}}
$$

Friction factors are used to represent travel time or impedance in the gravity model, as follows:
$F F_{i j}=T T_{i j}{ }^{\alpha} \times \exp \left(\beta \times T T_{i j}\right)$

Where is the travel time between zone and, and and are calibrated parameters.

The trip distribution process was implemented in CUBE using travel times skimmed from standard Sydney Strategic Travel Model runs. A trip length distribution was used to perform friction factor calibration. In the absence of observed trip length data for LCVs, the average trip length and trip length distribution from HTS LCV analysis was used. The resulting parameters for the friction factor equation were:
$\alpha=-0.02$
$\beta=-0.148$

Figure A2.3 LCV Trip Distribution Comparisons in 5 Minutes Bin
Estimated versus observed plots are useful in determining if the parameters are set up properly. A high R2 indicates a good degree of fit. Figure 2.2 shows the trip length distribution from HTS versus LCVM in 5 minutes bin.

A2.2.4 Time Period Estimation

The direct output from the LCV gravity model is LCV trips by origin zone and destination zone on an average weekday. Time period factors are then used to disaggregate average weekday trips to trips in individual time periods. These factors were derived from the LTAR (2009) study, where the time of each LCV trip attracted to a household or business was collected. The factors used are shown in Table 2.3 below.

Table A2.2 Time period factors used for the February 2010 Release LCV estimates

Am Peak	Inter Peak	Pm Peak	
7.00am -9.00am	$9.00 \mathrm{am}-3.00 \mathrm{pm}$	$3.00 \mathrm{pm}-6.00 \mathrm{pm}$	$6.00 \mathrm{pm}-7.00 \mathrm{am}$
0.16	0.61	0.13	0.10

Source: LTAR, 2009

A2.2.5 Sydney Airport

Sydney Airport is the largest LCV trip generator within Sydney GMA. BTS conducted a video camera study around the Sydney Airport Precinct over two consecutive weekdays in 2013. The study provides detailed classified traffic counts on Domestic and International Terminal access roads. There are more than 10,000 LCV trips to/from International and Domestic terminals daily in the study period. The projected future growth of airport LCV traffic is based on the reported airport passenger forecasts.

A2.3 LCV Model Results

Table 3.1 compares 2011 LCV trip estimates from the BTS February 2014 Release with the earlier BTS release ('the BTS February 2010 Forecasts'). The comparisons show that a slightly higher number of trips in the current model relative to the old model. This can be largely attributed to more service employment in the 2010 land use forecast.

Table A2.3 Total LCV trips and Average Trip Length on Average Weekday, 2011

2011	BTS February 2010 Release estimates	BTS February 2014 Release estimates	Difference
Total trips (Weekday)	$1,259,621$	$1,301,791$	$+3.3 \%$
Average Trip Length (km)	$\mathbf{1 1}$	$\mathbf{1 4}$	$+27.3 \%$

The average trip length from the revised model estimates is calibrated against the trip length from HTS LCV analysis.

A2.3.1 Comparison with external data

The VKT (Vehicle Kilometres Travelled) estimates associated with the February 2014 Release trip estimates for 2011 can be compared with the ABS Survey of Motor Vehicle Use (SMVU) VKT estimates released in 2012, as shown in Table A2.4 below.

Table A2.4 Total Business Kilometres Travelled by LCVs (Sydney SD)

	SMVU	BTS February 2010 Release estimates	Difference
Annual VKT (million)	4,344	3,677	-15%

It is important to note that the figure of 4,344 million annual business VKT for the SMVU shown in Table 3.2 is a BTS estimate of what the SMVU data would be if it used the same definition of LCV trips as applied by BTS 1. However, this SMVU estimate only provides an indicative comparison with the BTS estimates, as it is not possible to directly compare SMVU and BTS estimates of VKT for LCVs, due to the factor that some trips are treated differently in the two data sets.

It should also be noted that ABS reports an increase of more than 40\% LCV annual business VKT from 2006 to 2011; whereas Road and Maritime Service's (RMS) vehicle registration data show that the registered LCVs for Sydney GMA increased around 8\% in the same time period. It should be noted that the SMVU estimates are subject to a Relative Standard Error (RSE) of 12.9\%. The vehicle registration data from RMS is considered to be more reliable.

A2.3.2 Comparison with the Household Travel Survey (HTS)

The BTS Strategic Travel Model (STM) includes LCV trips in its estimate of total travel movements, where the LCV trip data is obtained from BTS's Household Travel Survey (HTS). While this HTS data for LCVs provides a wealth of detailed information for use in the STM, it does not necessarily reflect the true number of total LCV movements. This is because the HTS sample is household, not business, based, and the survey expansion variables that are applied are designed to optimize the accuracy of trips for personal, not business, reasons.

The number of business trips included in the STM is estimated by analysing 3-years (2009, 2010 and 2011) of pooled HTS data. Vehicles with the following body type are considered to be LCV:

- 4 Van / Pvan / Ute
- 41 Goods Van
- 42 Panel Van
- 43 Utility

A business trip is defined as a trip with the purpose of:

- Go to work
- Return to work
- Work related business

For the February 2014 Release LCV forecasts, BTS compared the 2011 base year LCV estimates with HTS estimates for the same year. This analysis showed that for 2011 the HTS captured 35% of total LCV movements. As a result, the LCV data from LCVM should be factored by 65% to take into account the overlapping when assign STM car demand and LCV demand together.

A2.4 LCV Forecasts

The key inputs to BTS's forecasts of LCV movements are:

- Forecasts of households by travel zone.
- Forecasts of employment by industry group by travel zone.

[^1]The household and employment forecasts used for the February 2014 Release LCV Forecasts were the BTS August 2009 Release Population and Employment Forecasts, respectively.

The forecasts of LCV movements are produced by:

- -Calculating future zonal trip ends based on household and employment forecasts. Note: Both household and business LCV attraction rates are assumed to be constant in future years.
- Using the Fratar method to forecast (back-cast) future (2006) trip tables based on zonal growth factors and the base 2011 trip table.

Figure A2.4 shows the future growth of land use and the total number of LCVs. It can be seen that the growth is LCV is consistent with the land use growth.

Figure A2.4 LCV and Land Use Growth

A2.5 Trip tables

Field names and descriptions for BTS's LCV trip tables for the February 2014 Release LCV forecasts are shown in Appendix 1.

A2.6 References

Service Vehicle Attraction Rates (SVAR), consultancy report to the Transport Data Centre, 1999.
Final report for the light commercial vehicle trip attraction rates study for the Transport Data Centre (LTAR), consultancy report to the Transport Data Centre, 2009.

A2.7 Appendix 1 BTS LCV trip table

Field Name	Description
O_TZ06	Origin 2006 Travel Zone
O_SLA06	Origin 2006 SLA
O_LGA06	Origin 2006 LGA
O_SSD06	Origin 2006 SSD
O_SD06	Origin 2006 SD
O_SUBREGION_METRO	Origin Metropolitan Strategy Subregion
D_TZ06	Destination 2006 Travel zone
D_SLA06	Destination 2006 SLA
D_LGA06	Destination 2006 LGA
D_SSD06	Destination 2006 SSD
D_SD06	Destination 2006 SD
D_SUBREGION_METRO	Destination Metropolitan Strategy Subregion
ROAD_DISTANCE_KM	Road distance in km between O_TZ06 and D_TZ06
TRIPS_2006_AMPEAK	The number of trips in 2006 AM Peak 2h
TRIPS_2006_INTERPEAK	The number of trips in 2006 Inter-Peak 2 h
TRIPS_2006_PMPEAK	The number of trips in 2006 PM Peak 2h
TRIPS_2006_EVENING	The number of trips in 2006 Night Time Period 2h
..	\ldots
TRIPS_2046_AMPEAK	The number of trips in 2046 AM Peak
TRIPS_2046_INTERPEAK	The number of trips in 2046 Inter-Peak
TRIPS_2046_PMPEAK	The number of trips in 2046 PM Peak
TRIPS_2046_EVENING	The number of trips in 2046 Night Time Period
O_TZ06_NAME	Origin 2006 Travel Zone name
O_SLA06_NAME	Origin 2006 SLA name
O_LGA06_NAME	Origin 2006 LGA name
O_SSD06_NAME	Origin 2006 SSD name
O_SD06_NAME	Origin 2006 SD name
O_SUBREGION_METRO_NAME	Origin Metropolitan Strategy Subregion name
D_TZ06_NAME	Destination 2006 Travel zone name
D_SLA06_NAME	Destination 2006 SLA name
D_LGA06_NAME	Destination 2006 LGA name
D_SSD06_NAME	Destination 2006 SSD name
D_SD06_NAME	Destination 2006 SD name
D_SUBREGION_METRO_NAME	Destination Metropolitan Strategy Subregion name

Appendix B

STM Network comparisons

B1. Changes in the 2016 Network (from the 2011 network)

B2. Changes in the 2021 network (from the 2016 network)

B3. Changes to the 2026 network (from the 2021 network)

B4. Changes to the 2031 network (from the2026 network)

Appendix C

Deloitte Distribution Data (by LGA)

C1. Deloitte distribution data

The distribution assumptions used in this assessment are based on information supplied by Deloitte to Parsons Brinckerhoff. The distribution data was supplied at the level of Local Government Areas (LGA) for the Sydney Greater Metropolitan Area. The data was supplied broken down into TEUS and truck level based on the Deloitte's analysis of loading factors and splits of loads to articulated and B-Double trucks as outlined in section 3.

This appendix details the supplied data as shown in Table C. 1 to C.9.

Table C1.1 Road distribution for 'Base Case’ scenario for Port Botany - Volume (TEUs)

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	374	391	432	443	439	445	448	448	507	569	633	701	771	1,179	1,705
Auburn	26,675	28,887	33,179	35,484	36,716	39,058	41,416	43,782	49,522	55,534	61,833	68,431	75,344	115,164	166,561
Bankstown	22,893	24,499	27,796	29,351	29,972	31,449	32,876	34,243	38,732	43,434	48,361	53,521	58,928	90,072	130,271
Baulkham Hills	67,523	71,832	76,392	81,215	86,317	91,714	97,422	103,459	108,508	113,795	119,334	125,136	131,213	166,214	210,362
Blacktown	445,030	479,002	515,176	553,685	594,667	638,271	684,654	733,979	769,792	807,305	846,599	887,758	930,871	1,179,182	1,492,389
Botany Bay	103,423	107,010	110,705	114,509	118,424	122,453	126,597	130,858	137,085	143,608	150,442	157,601	165,101	208,304	262,813
Burwood	5,352	5,645	6,307	6,552	6,573	6,769	6,934	7,066	7,992	8,962	9,979	11,044	12,159	18,586	26,881
Camden	21,929	25,971	30,290	34,902	39,826	45,083	50,695	56,682	61,831	67,180	72,740	78,525	84,549	118,742	161,193
Campbelltown	33,840	39,315	44,954	50,760	56,735	62,880	69,199	75,692	83,980	92,708	101,894	111,557	121,717	180,751	255,924
Canada Bay	1,420	1,497	1,672	1,737	1,742	1,793	1,837	1,871	2,117	2,374	2,643	2,925	3,220	4,922	7,119
Canterbury	3,811	4,013	4,475	4,639	4,645	4,771	4,875	4,954	5,603	6,284	6,996	7,743	8,525	13,031	18,846
Fairfield	110,466	120,008	130,081	140,712	151,932	163,770	176,260	189,436	201,355	213,845	226,934	240,651	255,024	337,881	442,504
Holroyd	68,825	72,872	77,014	81,249	85,576	89,995	94,504	99,102	106,612	114,486	122,739	131,390	140,457	192,753	258,827
Hornsby	16,955	17,781	19,741	20,366	20,282	20,713	21,026	21,211	23,991	26,904	29,955	33,152	36,501	55,792	80,692
Hunters Hill	340	352	384	390	380	380	376	369	417	468	521	576	634	970	1,403
Hurstville	2,442	2,577	2,879	2,992	3,002	3,093	3,169	3,231	3,654	4,098	4,563	5,050	5,560	8,498	12,290
Kogarah	1,431	1,454	1,506	1,519	1,510	1,513	1,509	1,499	1,617	1,742	1,872	2,008	2,151	2,973	4,025
Ku-ring-gai	471	505	573	605	619	650	680	709	802	899	1,001	1,108	1,220	1,865	2,697
Lane Cove	1,601	1,677	1,860	1,916	1,905	1,943	1,968	1,981	2,241	2,513	2,798	3,097	3,410	5,212	7,538
Leichhardt	1,095	1,173	1,334	1,411	1,443	1,518	1,590	1,660	1,877	2,105	2,344	2,594	2,856	4,365	6,314
Liverpool	155,660	161,727	167,986	174,441	181,098	187,963	195,042	202,341	212,214	222,556	233,388	244,735	256,620	325,074	411,418
Manly	220	212	202	191	178	164	148	129	136	142	149	156	163	206	260
Marrickville	9,813	10,100	5,977	6,250	10,975	11,191	11,385	11,553	12,467	13,424	14,426	15,476	16,576	22,914	26,509
Mosman	782	758	731	699	662	621	574	521	545	571	599	627	657	829	1,046
North Sydney	5,406	5,064	4,677	4,243	3,756	3,213	2,611	1,943	2,036	2,133	2,234	2,341	2,452	3,094	3,903
Parramatta	74,474	76,440	78,404	80,362	82,310	84,243	86,156	88,044	92,340	96,840	101,553	106,491	111,662	141,448	179,019
Penrith	278,077	299,354	322,012	346,134	371,808	399,125	428,185	459,091	481,492	504,955	529,532	555,277	582,244	737,557	933,463
Pittwater	1,095	1,144	1,264	1,298	1,286	1,305	1,316	1,318	1,490	1,671	1,861	2,059	2,267	3,466	5,012
Randwick	47,432	49,296	51,229	53,235	55,316	57,474	59,713	62,034	64,986	68,078	71,318	74,712	78,267	98,748	124,588
Rockdale	6,230	6,537	7,003	7,324	7,570	7,902	8,239	8,581	9,260	9,970	10,715	11,495	12,312	17,019	23,044
Ryde	2,928	2,944	3,114	3,037	2,832	2,675	2,469	2,211	2,501	2,805	3,123	3,456	3,806	5,817	8,413
Strathfield	8,895	9,580	10,943	11,637	11,970	12,657	13,338	14,010	15,846	17,770	19,785	21,897	24,109	36,851	53,297
Sutherland Shire	8,699	8,916	5,252	5,466	5,496	5,671	5,824	5,951	6,731	7,549	8,405	9,302	10,241	15,654	22,640
Sydney	26,461	27,279	28,687	29,429	29,806	30,459	31,058	31,595	34,093	36,710	39,451	42,323	45,332	62,663	84,844
Warringah	4,250	4,507	5,064	5,292	5,345	5,543	5,723	5,882	6,653	7,461	8,307	9,194	10,122	15,472	22,378
Waverley	502	487	469	447	423	396	365	330	346	362	379	397	416	525	663
Willoughby	5,934	5,974	6,005	6,026	6,034	6,030	6,012	5,978	6,263	6,561	6,873	7,200	7,543	9,517	12,007
Woollahra	1,925	1,857	1,778	1,688	1,585	1,469	1,337	1,190	1,247	1,306	1,368	1,433	1,502	1,895	2,390
TOTAL	1,574,677	1,678,638	1,787,546	1,901,636	2,021,156	2,146,363	2,277,528	2,414,936	2,558,881	2,709,677	2,867,648	3,033,137	3,206,501	4,205,204	5,465,247

Table C1.2 Road distribution for 'Project Case’ scenario for Port Botany - Volume (TEUs)

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	340	375	405	417	427	433	437	438	497	558	623	690	761	1,169	1,683
Auburn	21,464	21,404	20,461	18,141	15,312	11,962	13,887	16,451	20,299	24,541	29,180	34,222	39,672	73,387	119,073
Bankstown	20,797	23,532	26,084	27,642	29,165	30,646	32,077	33,448	37,937	42,639	47,566	52,727	58,133	89,277	128,571
Baulkham Hills	62,350	61,258	59,745	57,767	55,277	52,225	57,275	63,487	68,881	74,493	80,336	86,424	92,769	128,895	173,886
Blacktown	410,932	408,490	402,915	393,830	380,825	363,456	402,513	450,401	488,670	528,483	569,936	613,122	658,141	914,430	1,233,611
Botany Bay	103,423	107,010	110,705	114,509	118,424	122,453	126,597	130,858	137,085	143,608	150,442	157,601	165,101	208,304	262,813
Burwood	4,862	5,423	5,919	6,170	6,396	6,596	6,765	6,902	7,828	8,798	9,815	10,880	11,995	18,422	26,530
Camden	19,423	20,035	19,905	18,947	17,068	14,169	17,421	21,805	25,876	30,240	34,901	39,862	45,128	76,340	116,758
Campbelltown	29,973	30,329	29,542	27,556	24,315	19,762	23,780	29,118	35,145	41,732	48,889	56,629	64,967	116,206	185,375
Canada Bay	1,290	1,438	1,569	1,636	1,695	1,748	1,792	1,828	2,073	2,330	2,599	2,881	3,177	4,879	7,026
Canterbury	3,462	3,854	4,199	4,369	4,520	4,649	4,757	4,839	5,488	6,169	6,881	7,628	8,410	12,916	18,600
Fairfield	97,295	92,108	85,087	76,066	64,865	51,291	60,379	72,662	84,034	96,010	108,614	121,874	135,816	216,852	320,093
Holroyd	63,551	55,930	50,375	43,921	36,535	28,186	32,373	38,012	44,494	51,400	58,745	66,540	74,802	123,709	187,227
Hornsby	15,403	17,079	18,526	19,180	19,736	20,184	20,514	20,718	23,499	26,412	29,463	32,660	36,008	55,300	79,639
Hunters Hill	646	338	361	367	370	370	367	360	408	459	512	568	626	961	1,384
Hurstville	4,643	4,832	2,702	2,817	2,922	3,014	3,092	3,156	3,579	4,023	4,488	4,975	5,485	8,423	12,130
Kogarah	1,389	1,435	1,473	1,487	1,496	1,499	1,496	1,486	1,604	1,729	1,859	1,995	2,138	2,960	3,997
Ku-ring-gai	428	485	538	570	602	633	663	692	785	883	985	1,092	1,203	1,848	2,662
Lane Cove	3,044	3,145	1,746	1,805	1,854	1,893	1,920	1,935	2,195	2,467	2,752	3,051	3,364	5,166	7,440
Leichhardt	2,081	1,127	1,252	1,329	1,405	1,479	1,551	1,621	1,839	2,067	2,305	2,555	2,817	4,327	6,231
Liverpool	143,040	129,143	114,024	97,619	79,861	60,680	68,738	79,706	90,837	102,356	114,292	126,674	139,531	212,046	301,420
Manly	220	212	202	191	178	164	148	129	136	142	149	156	163	206	260
Marrickville	9,527	9,969	10,373	10,630	10,868	11,087	11,282	11,452	12,366	13,323	14,325	15,375	16,475	22,813	30,809
Mosman	782	758	731	699	662	621	574	521	545	571	599	627	657	829	1,046
North Sydney	5,406	5,064	4,677	4,243	3,756	3,213	2,611	1,943	2,036	2,133	2,234	2,341	2,452	3,094	3,903
Parramatta	68,768	65,188	61,319	57,160	52,711	47,971	50,652	54,028	58,618	63,394	68,366	73,547	78,947	109,690	147,977
Penrith	256,771	229,759	210,632	187,113	158,737	125,002	146,678	176,093	200,947	226,709	253,442	281,211	310,081	473,364	675,236
Pittwater	2,081	2,144	1,186	1,222	1,251	1,272	1,284	1,287	1,460	1,641	1,830	2,029	2,237	3,435	4,947
Randwick	47,432	49,296	51,229	53,235	55,316	57,474	59,713	62,034	64,986	68,078	71,318	74,712	78,267	98,748	124,588
Rockdale	6,048	6,452	6,851	7,171	7,497	7,828	8,165	8,506	9,185	9,895	10,640	11,420	12,237	16,944	22,883
Ryde	2,660	2,827	2,922	2,860	2,756	2,607	2,409	2,160	2,450	2,754	3,072	3,405	3,754	5,766	8,303
Strathfield	8,081	9,202	10,269	10,959	11,648	12,334	13,014	13,684	15,521	17,445	19,460	21,572	23,784	36,525	52,602
Sutherland Shire	8,445	8,800	9,115	9,296	9,455	9,590	9,700	9,781	10,561	11,378	12,234	13,131	14,071	19,484	26,313
Sydney	25,688	26,924	28,064	28,812	29,518	30,175	30,777	31,319	33,817	36,434	39,175	42,047	45,055	62,387	84,253
Warringah	8,080	4,329	4,752	4,984	5,201	5,402	5,584	5,746	6,517	7,325	8,171	9,057	9,986	15,336	22,086
Waverley	502	487	469	447	423	396	365	330	346	362	379	397	416	525	663
Willoughby	5,934	5,974	6,005	6,026	6,034	6,030	6,012	5,978	6,263	6,561	6,873	7,200	7,543	9,517	12,007
Woollahra	1,925	1,857	1,778	1,688	1,585	1,469	1,337	1,190	1,247	1,306	1,368	1,433	1,502	1,895	2,390
TOTAL	1,468,186	1,418,012	1,368,107	1,302,880	1,220,668	1,119,963	1,228,699	1,366,106	1,510,051	1,660,847	1,818,819	1,984,307	2,157,671	3,156,374	4,416,417

Table C1.3 Road distribution for 'Project Case’ scenario for Moorebank - Volume (TEUs)

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auburn	2,770	6,342	10,675	15,277	20,416	26,098	26,522	26,315	28,206	29,977	31,637	33,193	34,655	40,761	45,316
Bankstown	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Baulkham Hills	4,796	10,210	16,294	23,107	30,710	39,169	39,837	39,672	39,328	39,005	38,702	38,418	38,151	37,032	36,194
Blacktown	31,610	68,082	109,886	157,532	211,570	272,592	279,965	281,448	279,005	276,716	274,568	272,551	270,656	262,719	256,777
Botany Bay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Burwood	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Camden	2,506	5,936	10,385	15,955	22,758	30,914	33,273	34,877	35,955	36,939	37,839	38,664	39,421	42,402	44,435
Campbelltown	3,867	8,986	15,413	23,205	32,420	43,118	45,419	46,574	48,835	50,976	53,005	54,928	56,750	64,545	70,548
Canada Bay	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Canterbury	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Fairfield	12,554	27,291	44,393	64,056	86,486	111,908	115,321	116,225	116,767	117,278	117,759	118,212	118,639	120,447	121,818
Holroyd	4,889	16,572	26,283	36,986	48,714	61,496	61,831	60,802	61,825	62,787	63,690	64,541	65,342	68,712	71,253
Hornsby	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hunters Hill	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Hurstville	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Kogarah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ku-ring-gai	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lane Cove	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Leichhardt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Liverpool	18,457	38,265	59,491	82,206	106,482	132,393	131,285	127,491	126,220	125,030	123,914	122,867	121,885	117,777	114,711
Manly	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Marrickville	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mosman	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
North Sydney	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Parramatta	5,290	10,865	16,723	22,864	29,284	35,978	35,231	33,761	33,468	33,193	32,936	32,694	32,466	31,514	30,802
Penrith	19,752	68,077	109,895	157,569	211,650	272,732	280,146	281,665	279,220	276,929	274,780	272,762	270,865	262,921	256,975
Pittwater	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Randwick	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rockdale	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ryde	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Strathfield	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sutherland Shire	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sydney	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Warringah	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Waverley	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Willoughby	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Woollahra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	106,491	260,625	419,439	598,756	800,488	1,026,400	1,048,830	1,048,830	1,048,830	1,048,830	1,048,830	1,048,830	1,048,830	1,048,830	1,048,830

Table C1.4 Road distribution for 'Base Case' scenario for Port Botany - Semi truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7	0.8	1.2	1.7
Auburn	26.5	28.7	33.0	35.3	36.5	38.9	41.2	43.6	49.3	55.2	61.5	68.1	74.9	114.6	165.7
Bankstown	22.8	24.4	27.6	29.2	29.8	31.3	32.7	34.1	38.5	43.2	48.1	53.2	58.6	89.6	129.6
Baulkham Hills	67.2	71.5	76.0	80.8	85.9	91.2	96.9	102.9	107.9	113.2	118.7	124.5	130.5	165.3	209.3
Blacktown	442.7	476.5	512.5	550.8	591.5	634.9	681.0	730.1	765.7	803.1	842.1	883.1	926.0	1,173.0	1,484.5
Botany Bay	102.9	106.4	110.1	113.9	117.8	121.8	125.9	130.2	136.4	142.9	149.6	156.8	164.2	207.2	261.4
Burwood	5.3	5.6	6.3	6.5	6.5	6.7	6.9	7.0	8.0	8.9	9.9	11.0	12.1	18.5	26.7
Camden	21.8	25.8	30.1	34.7	39.6	44.8	50.4	56.4	61.5	66.8	72.4	78.1	84.1	118.1	160.3
Campbelltown	33.7	39.1	44.7	50.5	56.4	62.5	68.8	75.3	83.5	92.2	101.4	111.0	121.1	179.8	254.6
Canada Bay	1.4	1.5	1.7	1.7	1.7	1.8	1.8	1.9	2.1	2.4	2.6	2.9	3.2	4.9	7.1
Canterbury	3.8	4.0	4.5	4.6	4.6	4.7	4.8	4.9	5.6	6.3	7.0	7.7	8.5	13.0	18.7
Fairfield	109.9	119.4	129.4	140.0	151.1	162.9	175.3	188.4	200.3	212.7	225.7	239.4	253.7	336.1	440.2
Holroyd	68.5	72.5	76.6	80.8	85.1	89.5	94.0	98.6	106.1	113.9	122.1	130.7	139.7	191.7	257.5
Hornsby	16.9	17.7	19.6	20.3	20.2	20.6	20.9	21.1	23.9	26.8	29.8	33.0	36.3	55.5	80.3
Hunters Hill	0.3	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.6	1.0	1.4
Hurstville	2.4	2.6	2.9	3.0	3.0	3.1	3.2	3.2	3.6	4.1	4.5	5.0	5.5	8.5	12.2
Kogarah	1.4	1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.6	1.7	1.9	2.0	2.1	3.0	4.0
Ku-ring-gai	0.5	0.5	0.6	0.6	0.6	0.6	0.7	0.7	0.8	0.9	1.0	1.1	1.2	1.9	2.7
Lane Cove	1.6	1.7	1.9	1.9	1.9	1.9	2.0	2.0	2.2	2.5	2.8	3.1	3.4	5.2	7.5
Leichhardt	1.1	1.2	1.3	1.4	1.4	1.5	1.6	1.7	1.9	2.1	2.3	2.6	2.8	4.3	6.3
Liverpool	154.8	160.9	167.1	173.5	180.1	187.0	194.0	201.3	211.1	221.4	232.2	243.4	255.3	323.4	409.3
Manly	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.3
Marrickville	9.8	10.0	5.9	6.2	10.9	11.1	11.3	11.5	12.4	13.4	14.4	15.4	16.5	22.8	26.4
Mosman	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.5	0.5	0.6	0.6	0.6	0.7	0.8	1.0
North Sydney	5.4	5.0	4.7	4.2	3.7	3.2	2.6	1.9	2.0	2.1	2.2	2.3	2.4	3.1	3.9
Parramatta	74.1	76.0	78.0	79.9	81.9	83.8	85.7	87.6	91.9	96.3	101.0	105.9	111.1	140.7	178.1
Penrith	276.6	297.8	320.3	344.3	369.8	397.0	425.9	456.7	479.0	502.3	526.7	552.4	579.2	733.7	928.5
Pittwater	1.1	1.1	1.3	1.3	1.3	1.3	1.3	1.3	1.5	1.7	1.9	2.0	2.3	3.4	5.0
Randwick	47.2	49.0	51.0	53.0	55.0	57.2	59.4	61.7	64.6	67.7	70.9	74.3	77.9	98.2	123.9
Rockdale	6.2	6.5	7.0	7.3	7.5	7.9	8.2	8.5	9.2	9.9	10.7	11.4	12.2	16.9	22.9
Ryde	2.9	2.9	3.1	3.0	2.8	2.7	2.5	2.2	2.5	2.8	3.1	3.4	3.8	5.8	8.4
Strathfield	8.8	9.5	10.9	11.6	11.9	12.6	13.3	13.9	15.8	17.7	19.7	21.8	24.0	36.7	53.0
Sutherland Shire	8.7	8.9	5.2	5.4	5.5	5.6	5.8	5.9	6.7	7.5	8.4	9.3	10.2	15.6	22.5
Sydney	26.3	27.1	28.5	29.3	29.6	30.3	30.9	31.4	33.9	36.5	39.2	42.1	45.1	62.3	84.4
Warringah	4.2	4.5	5.0	5.3	5.3	5.5	5.7	5.9	6.6	7.4	8.3	9.1	10.1	15.4	22.3
Waverley	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.7
Willoughby	5.9	5.9	6.0	6.0	6.0	6.0	6.0	5.9	6.2	6.5	6.8	7.2	7.5	9.5	11.9
Woollahra	1.9	1.8	1.8	1.7	1.6	1.5	1.3	1.2	1.2	1.3	1.4	1.4	1.5	1.9	2.4
TOTAL	1,566	1,670	1,778	1,892	2,011	2,135	2,266	2,402	2,545	2,695	2,853	3,017	3,190	4,183	5,436

Table C1.5 Road distribution for 'Base Case' scenario for Port Botany - B-Double truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.5	0.8
Auburn	11.8	12.8	14.7	15.7	16.2	17.3	18.3	19.4	21.9	24.6	27.3	30.3	33.3	50.9	73.6
Bankstown	10.1	10.8	12.3	13.0	13.3	13.9	14.5	15.1	17.1	19.2	21.4	23.7	26.1	39.8	57.6
Baulkham Hills	29.9	31.8	33.8	35.9	38.2	40.5	43.1	45.7	48.0	50.3	52.8	55.3	58.0	73.5	93.0
Blacktown	196.7	211.8	227.8	244.8	262.9	282.2	302.7	324.5	340.3	356.9	374.3	392.5	411.5	521.3	659.8
Botany Bay	45.7	47.3	48.9	50.6	52.4	54.1	56.0	57.9	60.6	63.5	66.5	69.7	73.0	92.1	116.2
Burwood	2.4	2.5	2.8	2.9	2.9	3.0	3.1	3.1	3.5	4.0	4.4	4.9	5.4	8.2	11.9
Camden	9.7	11.5	13.4	15.4	17.6	19.9	22.4	25.1	27.3	29.7	32.2	34.7	37.4	52.5	71.3
Campbelltown	15.0	17.4	19.9	22.4	25.1	27.8	30.6	33.5	37.1	41.0	45.0	49.3	53.8	79.9	113.1
Canada Bay	0.6	0.7	0.7	0.8	0.8	0.8	0.8	0.8	0.9	1.0	1.2	1.3	1.4	2.2	3.1
Canterbury	1.7	1.8	2.0	2.1	2.1	2.1	2.2	2.2	2.5	2.8	3.1	3.4	3.8	5.8	8.3
Fairfield	48.8	53.1	57.5	62.2	67.2	72.4	77.9	83.8	89.0	94.5	100.3	106.4	112.7	149.4	195.6
Holroyd	30.4	32.2	34.0	35.9	37.8	39.8	41.8	43.8	47.1	50.6	54.3	58.1	62.1	85.2	114.4
Hornsby	7.5	7.9	8.7	9.0	9.0	9.2	9.3	9.4	10.6	11.9	13.2	14.7	16.1	24.7	35.7
Hunters Hill	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.6
Hurstville	1.1	1.1	1.3	1.3	1.3	1.4	1.4	1.4	1.6	1.8	2.0	2.2	2.5	3.8	5.4
Kogarah	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.9	1.0	1.3	1.8
Ku-ring-gai	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.4	0.5	0.5	0.8	1.2
Lane Cove	0.7	0.7	0.8	0.8	0.8	0.9	0.9	0.9	1.0	1.1	1.2	1.4	1.5	2.3	3.3
Leichhardt	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9	1.0	1.1	1.3	1.9	2.8
Liverpool	68.8	71.5	74.3	77.1	80.1	83.1	86.2	89.5	93.8	98.4	103.2	108.2	113.5	143.7	181.9
Manly	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Marrickville	4.3	4.5	2.6	2.8	4.9	4.9	5.0	5.1	5.5	5.9	6.4	6.8	7.3	10.1	11.7
Mosman	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.5
North Sydney	2.4	2.2	2.1	1.9	1.7	1.4	1.2	0.9	0.9	0.9	1.0	1.0	1.1	1.4	1.7
Parramatta	32.9	33.8	34.7	35.5	36.4	37.2	38.1	38.9	40.8	42.8	44.9	47.1	49.4	62.5	79.1
Penrith	122.9	132.3	142.4	153.0	164.4	176.5	189.3	203.0	212.9	223.2	234.1	245.5	257.4	326.1	412.7
Pittwater	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.6	0.7	0.7	0.8	0.9	1.0	1.5	2.2
Randwick	21.0	21.8	22.6	23.5	24.5	25.4	26.4	27.4	28.7	30.1	31.5	33.0	34.6	43.7	55.1
Rockdale	2.8	2.9	3.1	3.2	3.3	3.5	3.6	3.8	4.1	4.4	4.7	5.1	5.4	7.5	10.2
Ryde	1.3	1.3	1.4	1.3	1.3	1.2	1.1	1.0	1.1	1.2	1.4	1.5	1.7	2.6	3.7
Strathfield	3.9	4.2	4.8	5.1	5.3	5.6	5.9	6.2	7.0	7.9	8.7	9.7	10.7	16.3	23.6
Sutherland Shire	3.8	3.9	2.3	2.4	2.4	2.5	2.6	2.6	3.0	3.3	3.7	4.1	4.5	6.9	10.0
Sydney	11.7	12.1	12.7	13.0	13.2	13.5	13.7	14.0	15.1	16.2	17.4	18.7	20.0	27.7	37.5
Warringah	1.9	2.0	2.2	2.3	2.4	2.5	2.5	2.6	2.9	3.3	3.7	4.1	4.5	6.8	9.9
Waverley	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3
Willoughby	2.6	2.6	2.7	2.7	2.7	2.7	2.7	2.6	2.8	2.9	3.0	3.2	3.3	4.2	5.3
Woollahra	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.6	0.6	0.6	0.6	0.7	0.8	1.1
TOTAL	696	742	790	841	894	949	1,007	1,068	1,131	1,198	1,268	1,341	1,418	1,859	2,416

Table C1.6 Road distribution for 'Project Case’ scenario for Port Botany - Semi Truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.6	0.6	0.7	0.8	1.2	1.7
Auburn	21.4	21.3	20.4	18.0	15.2	11.9	13.8	16.4	20.2	24.4	29.0	34.0	39.5	73.0	118.4
Bankstown	20.7	23.4	25.9	27.5	29.0	30.5	31.9	33.3	37.7	42.4	47.3	52.4	57.8	88.8	127.9
Baulkham Hills	62.0	60.9	59.4	57.5	55.0	52.0	57.0	63.2	68.5	74.1	79.9	86.0	92.3	128.2	173.0
Blacktown	408.8	406.3	400.8	391.8	378.8	361.5	400.4	448.0	486.1	525.7	566.9	609.9	654.7	909.6	1,227.1
Botany Bay	102.9	106.4	110.1	113.9	117.8	121.8	125.9	130.2	136.4	142.9	149.6	156.8	164.2	207.2	261.4
Burwood	4.8	5.4	5.9	6.1	6.4	6.6	6.7	6.9	7.8	8.8	9.8	10.8	11.9	18.3	26.4
Camden	19.3	19.9	19.8	18.8	17.0	14.1	17.3	21.7	25.7	30.1	34.7	39.7	44.9	75.9	116.1
Campbelltown	29.8	30.2	29.4	27.4	24.2	19.7	23.7	29.0	35.0	41.5	48.6	56.3	64.6	115.6	184.4
Canada Bay	1.3	1.4	1.6	1.6	1.7	1.7	1.8	1.8	2.1	2.3	2.6	2.9	3.2	4.9	7.0
Canterbury	3.4	3.8	4.2	4.3	4.5	4.6	4.7	4.8	5.5	6.1	6.8	7.6	8.4	12.8	18.5
Fairfield	96.8	91.6	84.6	75.7	64.5	51.0	60.1	72.3	83.6	95.5	108.0	121.2	135.1	215.7	318.4
Holroyd	63.2	55.6	50.1	43.7	36.3	28.0	32.2	37.8	44.3	51.1	58.4	66.2	74.4	123.1	186.2
Hornsby	15.3	17.0	18.4	19.1	19.6	20.1	20.4	20.6	23.4	26.3	29.3	32.5	35.8	55.0	79.2
Hunters Hill	0.6	0.3	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.6	0.6	1.0	1.4
Hurstville	4.6	4.8	2.7	2.8	2.9	3.0	3.1	3.1	3.6	4.0	4.5	4.9	5.5	8.4	12.1
Kogarah	1.4	1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.6	1.7	1.8	2.0	2.1	2.9	4.0
Ku-ring-gai	0.4	0.5	0.5	0.6	0.6	0.6	0.7	0.7	0.8	0.9	1.0	1.1	1.2	1.8	2.6
Lane Cove	3.0	3.1	1.7	1.8	1.8	1.9	1.9	1.9	2.2	2.5	2.7	3.0	3.3	5.1	7.4
Leichhardt	2.1	1.1	1.2	1.3	1.4	1.5	1.5	1.6	1.8	2.1	2.3	2.5	2.8	4.3	6.2
Liverpool	142.3	128.5	113.4	97.1	79.4	60.4	68.4	79.3	90.4	101.8	113.7	126.0	138.8	210.9	299.8
Manly	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.2	0.3
Marrickville	9.5	9.9	10.3	10.6	10.8	11.0	11.2	11.4	12.3	13.3	14.2	15.3	16.4	22.7	30.6
Mosman	0.8	0.8	0.7	0.7	0.7	0.6	0.6	0.5	0.5	0.6	0.6	0.6	0.7	0.8	1.0
North Sydney	5.4	5.0	4.7	4.2	3.7	3.2	2.6	1.9	2.0	2.1	2.2	2.3	2.4	3.1	3.9
Parramatta	68.4	64.8	61.0	56.9	52.4	47.7	50.4	53.7	58.3	63.1	68.0	73.2	78.5	109.1	147.2
Penrith	255.4	228.5	209.5	186.1	157.9	124.3	145.9	175.2	199.9	225.5	252.1	279.7	308.4	470.9	671.7
Pittwater	2.1	2.1	1.2	1.2	1.2	1.3	1.3	1.3	1.5	1.6	1.8	2.0	2.2	3.4	4.9
Randwick	47.2	49.0	51.0	53.0	55.0	57.2	59.4	61.7	64.6	67.7	70.9	74.3	77.9	98.2	123.9
Rockdale	6.0	6.4	6.8	7.1	7.5	7.8	8.1	8.5	9.1	9.8	10.6	11.4	12.2	16.9	22.8
Ryde	2.6	2.8	2.9	2.8	2.7	2.6	2.4	2.1	2.4	2.7	3.1	3.4	3.7	5.7	8.3
Strathfield	8.0	9.2	10.2	10.9	11.6	12.3	12.9	13.6	15.4	17.4	19.4	21.5	23.7	36.3	52.3
Sutherland Shire	8.4	8.8	9.1	9.2	9.4	9.5	9.6	9.7	10.5	11.3	12.2	13.1	14.0	19.4	26.2
Sydney	25.6	26.8	27.9	28.7	29.4	30.0	30.6	31.2	33.6	36.2	39.0	41.8	44.8	62.1	83.8
Warringah	8.0	4.3	4.7	5.0	5.2	5.4	5.6	5.7	6.5	7.3	8.1	9.0	9.9	15.3	22.0
Waverley	0.5	0.5	0.5	0.4	0.4	0.4	0.4	0.3	0.3	0.4	0.4	0.4	0.4	0.5	0.7
Willoughby	5.9	5.9	6.0	6.0	6.0	6.0	6.0	5.9	6.2	6.5	6.8	7.2	7.5	9.5	11.9
Woollahra	1.9	1.8	1.8	1.7	1.6	1.5	1.3	1.2	1.2	1.3	1.4	1.4	1.5	1.9	2.4
TOTAL	1,460	1,411	1,361	1,296	1,214	1,114	1,222	1,359	1,502	1,652	1,809	1,974	2,146	3,140	4,393

Table C1.7 Road distribution for 'Project Case' scenario for Port Botany - B-Double truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.3	0.5	0.7
Auburn	9.5	9.5	9.0	8.0	6.8	5.3	6.1	7.3	9.0	10.8	12.9	15.1	17.5	32.4	52.6
Bankstown	9.2	10.4	11.5	12.2	12.9	13.5	14.2	14.8	16.8	18.9	21.0	23.3	25.7	39.5	56.8
Baulkham Hills	27.6	27.1	26.4	25.5	24.4	23.1	25.3	28.1	30.5	32.9	35.5	38.2	41.0	57.0	76.9
Blacktown	181.7	180.6	178.1	174.1	168.4	160.7	178.0	199.1	216.0	233.6	252.0	271.1	291.0	404.3	545.4
Botany Bay	45.7	47.3	48.9	50.6	52.4	54.1	56.0	57.9	60.6	63.5	66.5	69.7	73.0	92.1	116.2
Burwood	2.1	2.4	2.6	2.7	2.8	2.9	3.0	3.1	3.5	3.9	4.3	4.8	5.3	8.1	11.7
Camden	8.6	8.9	8.8	8.4	7.5	6.3	7.7	9.6	11.4	13.4	15.4	17.6	20.0	33.8	51.6
Campbelltown	13.3	13.4	13.1	12.2	10.7	8.7	10.5	12.9	15.5	18.4	21.6	25.0	28.7	51.4	82.0
Canada Bay	0.6	0.6	0.7	0.7	0.7	0.8	0.8	0.8	0.9	1.0	1.1	1.3	1.4	2.2	3.1
Canterbury	1.5	1.7	1.9	1.9	2.0	2.1	2.1	2.1	2.4	2.7	3.0	3.4	3.7	5.7	8.2
Fairfield	43.0	40.7	37.6	33.6	28.7	22.7	26.7	32.1	37.2	42.4	48.0	53.9	60.0	95.9	141.5
Holroyd	28.1	24.7	22.3	19.4	16.2	12.5	14.3	16.8	19.7	22.7	26.0	29.4	33.1	54.7	82.8
Hornsby	6.8	7.6	8.2	8.5	8.7	8.9	9.1	9.2	10.4	11.7	13.0	14.4	15.9	24.4	35.2
Hunters Hill	0.3	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3	0.3	0.4	0.6
Hurstville	2.1	2.1	1.2	1.2	1.3	1.3	1.4	1.4	1.6	1.8	2.0	2.2	2.4	3.7	5.4
Kogarah	0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.8	0.8	0.9	0.9	1.3	1.8
Ku-ring-gai	0.2	0.2	0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.4	0.4	0.5	0.5	0.8	1.2
Lane Cove	1.3	1.4	0.8	0.8	0.8	0.8	0.8	0.9	1.0	1.1	1.2	1.3	1.5	2.3	3.3
Leichhardt	0.9	0.5	0.6	0.6	0.6	0.7	0.7	0.7	0.8	0.9	1.0	1.1	1.2	1.9	2.8
Liverpool	63.2	57.1	50.4	43.2	35.3	26.8	30.4	35.2	40.2	45.3	50.5	56.0	61.7	93.7	133.3
Manly	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Marrickville	4.2	4.4	4.6	4.7	4.8	4.9	5.0	5.1	5.5	5.9	6.3	6.8	7.3	10.1	13.6
Mosman	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.2	0.3	0.3	0.3	0.3	0.4	0.5
North Sydney	2.4	2.2	2.1	1.9	1.7	1.4	1.2	0.9	0.9	0.9	1.0	1.0	1.1	1.4	1.7
Parramatta	30.4	28.8	27.1	25.3	23.3	21.2	22.4	23.9	25.9	28.0	30.2	32.5	34.9	48.5	65.4
Penrith	113.5	101.6	93.1	82.7	70.2	55.3	64.8	77.9	88.8	100.2	112.0	124.3	137.1	209.3	298.5
Pittwater	0.9	0.9	0.5	0.5	0.6	0.6	0.6	0.6	0.6	0.7	0.8	0.9	1.0	1.5	2.2
Randwick	21.0	21.8	22.6	23.5	24.5	25.4	26.4	27.4	28.7	30.1	31.5	33.0	34.6	43.7	55.1
Rockdale	2.7	2.9	3.0	3.2	3.3	3.5	3.6	3.8	4.1	4.4	4.7	5.0	5.4	7.5	10.1
Ryde	1.2	1.2	1.3	1.3	1.2	1.2	1.1	1.0	1.1	1.2	1.4	1.5	1.7	2.5	3.7
Strathfield	3.6	4.1	4.5	4.8	5.1	5.5	5.8	6.0	6.9	7.7	8.6	9.5	10.5	16.1	23.3
Sutherland Shire	3.7	3.9	4.0	4.1	4.2	4.2	4.3	4.3	4.7	5.0	5.4	5.8	6.2	8.6	11.6
Sydney	11.4	11.9	12.4	12.7	13.0	13.3	13.6	13.8	15.0	16.1	17.3	18.6	19.9	27.6	37.2
Warringah	3.6	1.9	2.1	2.2	2.3	2.4	2.5	2.5	2.9	3.2	3.6	4.0	4.4	6.8	9.8
Waverley	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.3
Willoughby	2.6	2.6	2.7	2.7	2.7	2.7	2.7	2.6	2.8	2.9	3.0	3.2	3.3	4.2	5.3
Woollahra	0.9	0.8	0.8	0.7	0.7	0.6	0.6	0.5	0.6	0.6	0.6	0.6	0.7	0.8	1.1
TOTAL	649	627	605	576	540	495	543	604	668	734	804	877	954	1,395	1,953

Table C1.8 Road distribution for 'Project Case’ scenario for Moorebank - Semi Truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Auburn	3.3	7.5	12.7	18.2	24.3	31.0	31.6	31.3	33.6	35.7	37.6	39.5	41.2	48.5	53.9
Bankstown	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baulkham Hills	5.7	12.1	19.4	27.5	36.5	46.6	47.4	47.2	46.8	46.4	46.0	45.7	45.4	44.1	43.1
Blacktown	37.6	81.0	130.7	187.4	251.7	324.3	333.0	334.8	331.9	329.2	326.6	324.2	322.0	312.5	305.5
Botany Bay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Burwood	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Camden	3.0	7.1	12.4	19.0	27.1	36.8	39.6	41.5	42.8	43.9	45.0	46.0	46.9	50.4	52.9
Campbelltown	4.6	10.7	18.3	27.6	38.6	51.3	54.0	55.4	58.1	60.6	63.1	65.3	67.5	76.8	83.9
Canada Bay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Canterbury	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fairfield	14.9	32.5	52.8	76.2	102.9	133.1	137.2	138.3	138.9	139.5	140.1	140.6	141.1	143.3	144.9
Holroyd	5.8	19.7	31.3	44.0	57.9	73.2	73.6	72.3	73.5	74.7	75.8	76.8	77.7	81.7	84.8
Hornsby	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hunters Hill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hurstville	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kogarah	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ku-ring-gai	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lane Cove	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leichhardt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liverpool	22.0	45.5	70.8	97.8	126.7	157.5	156.2	151.7	150.1	148.7	147.4	146.2	145.0	140.1	136.5
Manly	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Marrickville	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mosman	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
North Sydney	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Parramatta	6.3	12.9	19.9	27.2	34.8	42.8	41.9	40.2	39.8	39.5	39.2	38.9	38.6	37.5	36.6
Penrith	23.5	81.0	130.7	187.4	251.8	324.4	333.3	335.1	332.2	329.4	326.9	324.5	322.2	312.8	305.7
Pittwater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Randwick	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rockdale	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ryde	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Strathfield	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sutherland Shire	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sydney	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Warringah	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waverley	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Willoughby	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Woollahra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	127	310	499	712	952	1,221	1,248	1,248	1,248	1,248	1,248	1,248	1,248	1,248	1,248

Table C1.9 Road distribution for 'Project Case’ scenario for Moorebank - B-Double truck movements per day - round trips

LGA	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2035	2040
Ashfield	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Auburn	0.5	1.3	2.1	3.0	4.0	5.2	5.3	5.2	5.6	5.9	6.3	6.6	6.9	8.1	9.0
Bankstown	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Baulkham Hills	1.0	2.0	3.2	4.6	6.1	7.8	7.9	7.9	7.8	7.7	7.7	7.6	7.6	7.3	7.2
Blacktown	6.3	13.5	21.8	31.2	41.9	54.0	55.5	55.8	55.3	54.9	54.4	54.0	53.7	52.1	50.9
Botany Bay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Burwood	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Camden	0.5	1.2	2.1	3.2	4.5	6.1	6.6	6.9	7.1	7.3	7.5	7.7	7.8	8.4	8.8
Campbelltown	0.8	1.8	3.1	4.6	6.4	8.5	9.0	9.2	9.7	10.1	10.5	10.9	11.3	12.8	14.0
Canada Bay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Canterbury	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Fairfield	2.5	5.4	8.8	12.7	17.1	22.2	22.9	23.0	23.2	23.3	23.3	23.4	23.5	23.9	24.2
Holroyd	1.0	3.3	5.2	7.3	9.7	12.2	12.3	12.1	12.3	12.4	12.6	12.8	13.0	13.6	14.1
Hornsby	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hunters Hill	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Hurstville	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Kogarah	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ku-ring-gai	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lane Cove	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leichhardt	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liverpool	3.7	7.6	11.8	16.3	21.1	26.2	26.0	25.3	25.0	24.8	24.6	24.4	24.2	23.4	22.7
Manly	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Marrickville	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Mosman	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
North Sydney	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Parramatta	1.0	2.2	3.3	4.5	5.8	7.1	7.0	6.7	6.6	6.6	6.5	6.5	6.4	6.2	6.1
Penrith	3.9	13.5	21.8	31.2	42.0	54.1	55.5	55.8	55.4	54.9	54.5	54.1	53.7	52.1	50.9
Pittwater	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Randwick	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Rockdale	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ryde	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Strathfield	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sutherland Shire	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Sydney	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Warringah	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Waverley	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Willoughby	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Woollahra	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	21	52	83	119	159	203	208	208	208	208	208	208	208	208	208

Appendix D

Deloitte Distribution Data (by Postcode)

D1. Allocation by postcode

Table D1.1 Percentage allocation by postcode (for 6 of the LGA's with the greatest volume of traffic tolfrom Moorebank)

LGA	Postcode	Percentage of LGA volume	LGA	Postcode	Percentage of LGA volume
Penrith	2759	76.2\%	Fairfield	2169	48.1\%
	2750	13.7\%		2165	16.3\%
	2760	9.3\%		2161	13.6\%
	2178	0.3\%		2166	8.7\%
	2747	0.2\%		2163	7.3\%
	2749	0.1\%		2175	5.5\%
Blacktown	2766	42.8\%		2177	0.2\%
	2148	24.7\%	Campbelltown	2566	52.5\%
	2147	11.0\%		2565	44.5\%
	2770	9.2\%		2560	3.3\%
	2761	6.4\%	Camden	2567	99.2\%
	2760	3.6\%		2570	0.4\%
	2765	2.0\%		2179	0.3\%
Liverpool	2170	75.6\%		2557	0.1\%
	2173	20.2\%			
	2171	3.6\%			
	2178	0.2\%			
	2556	0.1\%			
	2179	0.1\%			

Appendix E

Change in articulated truck volumes on key corridors

Figure D1.1 Change in articulated vehicle flows to/from Port Botany and Moorebank on the M5 between Sydney Airport and Hume Highway

Figure D1.2 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on the M5 between Hume Highway and Narellan Road

Figure D1.3 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on the M7 between the M5 and M4

Figure D1.4 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on General Holmes Drive between Botany Road and The Grand Parade

Figure D1.5 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on Foreshore Road/Botany Road between Southern Cross Road and
Bumborah Point Road

Figure D1.6 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on the M2 between Delhi Road and Abbott Road

Figure D1.7 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on Pennant Hills Road/Cumberland Highway between James Ruse Drive and the M1

Figure D1.8 Change in articulated vehicle flows tolfrom Port Botany and Moorebank on the M1 north of Cumberland Highway

Figure D1.9 Change in articulated vehicle flows to/from Port Botany and Moorebank on the Hume HighwaylCumberland between the M5 and the M4

Appendix F

Change in speed

Figure D1.1
Change in speed, 2031 AM Peak ('Project Case’ versus 'Base Case')

Figure D1.2 Change in speed, 2031 inter-peak period ('Project Case’ versus 'Base Case')

Figure D1.3
Change in speed, 2031 PM peak ('Project Case versus ‘Base Case')

Figure D1.4
Change in speed, 2031 night time period ('Project Case versus 'Base Case')

Appendix K

Deloitte EIS - Supporting
Information

Deloitte.

Moorebank Intermodal Company
 EIS - Supporting Information
 18 September 2014

FINAL

Liability limited by a scheme approved under Professional Standards Legislation.

Contents

1 Introduction 8
2 Port Botany forecasts 8
3 Spatial Distribution 9
3.1 Updated Data Sets 9
3.2 Addition of Industrial Lands data 10
3.3 Updated Distribution 11
4 Truck Trip Generation 13
4.1 Assumptions 14
4.2 Approach to Estimating Truck Trips 15
4.2.1 IMEX and Interstate throughput 16
4.3 Movements requiring transport off site 16
4.3.1 IMEX market 16
4.3.2 Interstate Market - 2030 18
4.3.3 Interstate Market - 2050 19
4.3.4 Combined IMEX and Interstate at 2030 20
4.3.5 Combined IMEX and Interstate at 2050 22
4.3.6 Summary 24
4.4 Direct FCL and empty container movements 26
4.4.1 IMEX Market 26
4.4.2 Interstate Market - 2030 29
4.4.3 Interstate Market - 2050 33
4.4.4 Combined IMEX and Interstate movements at 2030 36
4.4.5 Combined IMEX and Interstate movements at 2050 39
4.5 Movements to and from the Warehouses 43
4.5.1 IMEX Market 43
4.5.2 Interstate Containers 2030 47
4.5.3 Interstate Containers 2050 50
4.5.4 Combined IMEX and Interstate Containers 2030 53
4.5.5 Combined IMEX and Interstate Containers 2050 58
5 Additional Sensitivity Analysis 63
5.1 Key Assumptions that impact on Trip Generation 63
5.1.1 Pallet Loads 63
5.1.2 Distribution during AM Peak period 64
5.2 Impact of Cumulative Scenarios 64
5.2.1 Scenario One - Reduced IMEX volume 65
5.2.2 Scenario Two - Interstate terminal only 66
6 Limitation of our work 69
General use restriction 69
Appendix A 70

List of Tables and Figures

Table 1: Comparison of Moorebank IMT Demand by LGA at 2030 11
Table 2 : Terminal Truck Assumptions 14
Table 3 : Warehousing related truck assumptions 15
Table 4 : Onsite empty container imbalance 16
Table 5 : Summary of terminal throughput at 2030 24
Table 6 : Summary of Terminal throughput at 2050 24
Table 7 : Total inbound and outbound IMEX moves per week and per weekday (2030) 29
Table 8 : Average weekday inbound and outbound IMEX Articulated truck movements 29
Table 9 : Total inbound and outbound interstate moves per week and per weekday (2030) 32
Table 10 : Average weekday interstate inbound and outbound Articulated truck movements 33
Table 11 : Total inbound and outbound interstate related moves per week and per weekday (2050) 35
Table 12 : Average weekday interstate inbound and outbound Articulated truck movements 36
Table 13 : Total combined inbound and outbound moves per week and per weekday (2030) 39
Table 14 : Combined average weekday inbound and outbound Articulated truck movements 39
Table 15 : Total combined inbound and outbound moves per week and per weekday (2050) 42
Table 16 : Average combined weekday inbound and outbound Articulated truck movements 2050 43
Table 17 : Average weekly inbound and outbound IMEX warehouse related road movements 46
Table 18 : Average IMEX warehouse related weekday inbound and outbound truck movements 2030 46
Table 19 : Average weekly interstate inbound and outbound warehouse related road movements 2030 49
Table 20 : Total average weekday interstate related warehouse truck movements 50
Table 21: Average weekly inbound and outbound warehouse related road movements 52
Table 22 : Average total weekday truck movements for interstate related warehouse activity at 2050 53
Table 23 : Average weekly inbound and outbound warehouse related road movements 2030 for IMEX and Interstate combined 56
Table 24 : Total combined average weekday truck movements for warehousing activity at 2030 57
Table 25 : Average weekly inbound and outbound warehouse related road movements2050 for IMEX and Interstate combined60
Table 26 : Total combined average weekday truck movements for warehousing activity at 2050 61
Table 27 : Sensitivity analysis for outbound AM peak hour truck movements for warehousing activity assuming different pallet loads for rigid trucks 63
Table 28 : Sensitivity analysis for inbound AM peak hour truck movements for warehousing activity assuming different pallet loads for rigid trucks
Table 29 : Sensitivity analysis for AM peak hour truck movements for both direct and warehouse related traffic - Peak Hour distribution64
Table 30 : Scenario 1 - Reduced IMEX (500k TEU only) plus Interstate 65
Table 31 : Reduced IMEX Scenario - Total combined average weekday truck movements for combined activity at 2030 and 2050 66
Table 32 : Scenario 2 - Interstate Terminal cargo only 66
Table 33 : Interstate Only Scenario - Total combined average weekday truck movements for combined activity at 2030 and 2050 67
Figure 1 : NSW container volume forecasts 2020-2040 (Transport for NSW) 9
Figure 2 : Original demand update 2013 distribution 12
Figure 3 : Modified demand update 2013 based on selected DoP distribution 13
Figure 4 : Moorebank IMEX flows for 2030 25
Figure 5 : Moorebank Interstate flows for 2030 25
Figure 6 : Moorebank Terminal interstate container flows at 2050 26
Figure 7 : Total average weekday truck movements at 2030 57
Figure 8 : Total average weekday truck movements at 2050 61
Figure 9 : IMEX Flows through the terminal - 2030 to 2050 71
Figure 10 : Interstate flows through the terminal: 2030 72
Figure 11 : Interstate flows through the terminal: 2050 73
Figure 12 : IMEX and Interstate generated truck movements onto and off the terminal: 2030 74
Figure 13 : IMEX and Interstate generated truck movements onto and off the terminal: 2050 75

Glossary

Acronym	Description
\$	Australian dollars unless stated otherwise
" ' or ft	Foot, a unit of length
ACBPS	Australian Customs and Border Protection Services
ACFS	Australian Container Freight Services
ARTC	Australian Rail Track Corporation Ltd
BITRE	Bureau of Infrastructure, Transport and Regional Economics
BTS	NSW Bureau of Transport Statistics
BWSGA	Broader Western Sydney Growth Area
DAE	Deloitte Access Economics, a team within Deloitte Touche Tohmatsu
DC	Distribution centre
ECP	Empty container park
FAK	Freight of all kinds
FCL	Full container load
FEU	Forty-foot equivalent unit, a measure used for capacity in container transportation
GDP	Gross domestic product
GSP	Gross state product
Ha	Hectare, a metric unit of area
IMEX	Import-export
IMT	Intermodal terminal
LCL	Less than container load
LGA	Local government areas
m	Metres, a metric unit of length
MIC	Moorebank Intermodal Company Ltd
NSW	New South Wales

Acronym	Description
PBLIS	Port Botany Landside Improvement Strategy
Pick and Pack	Part of a complete supply chain management process commonly used in the distribution of retail goods. It involves processing quantities of product delivered by truck or train by picking relevant products for each final destination (e.g. retail outlet) and re-packaging them for delivery.
PUD	Pickup and delivery
SPC	Sydney Ports Corporation
sq m	Square metre, a metric unit of area
SSFL	Southern Sydney Freight Line
Stack run	Stack runs are where the transport operator runs containers to its depot at night and progressively distributes containers to customers over the following one to three days. This generally improves delivery reliability and has been adopted as standard practice by a number of large transport operators servicing the port
SWGC	South West Growth Centre
TEU	Twenty-foot equivalent unit, a measure used for capacity in container transportation

1 Introduction

The purpose of this document is to consolidate the various technical notes that have been developed and / or provided to supplement existing reports and data prepared by Deloitte. The technical notes were prepared, in order to inform, in the first instance, the preparation of the Moorebank Intermodal Terminal (Moorebank IMT) Environmental Impact Statement (EIS).

The contents of this document arise from direct requests for additional information or clarification from MIC. The focus of the technical notes has generally been to set out the approach or detailed methodology behind the assumptions and data that have used from reports that Deloitte has prepared and submitted to Moorebank Intermodal Company (MIC).
The document is therefore not a standalone document, nor is it a complete set of detailed explanations behind all of the assumptions and data provided throughout the project.

2 Port Botany forecasts

Market growth expectations for container volumes through Port Botany in the original Detailed Business Case (DBC) were based on forecasts developed by Sydney Ports Corporation (SPC). These forecasts were developed according to number of growth scenarios for containerised freight movements, ranging from a low growth scenario of 4.8%, to a high growth scenario of 7.2%. A "likely" (or medium) growth rate SPC developed of 6.7%, which resulted in a forecasted Port volume of approximately 7 million TEU by 2030-31, was adopted in the analysis.
The extent to which these high growth rates could be maintained has been a much discussed subject within the freight industry. On the one hand, there was a view that structural changes within the economy that led to high levels of imports would reach an equilibrium state and growth rates would decline to levels more closely aligned with economic growth. Other views suggested that the high reliance on imports would continue into the foreseeable future as shipping rates remained low and supply chain efficiency improved, thereby allowing an everincreasing range of products to be transported to Australia from overseas' markets.

With these issues in mind, the Port Botany throughput revised forecast from the 2013 NSW Draft Freight Strategy was used, with the Port's volumes growing to 4.9 million TEU by 2030, implying an annual growth rate of around 4.8%. As part of an update to Moorebank demand in December 2013, a high level analysis of the relationship between Gross State Product (GSP) and Port throughput indicated that the scenario outlined above be considered adequate given future GSP growth.
It is noted that since this analysis, Transport for NSW released the final NSW Freight and Ports Strategy. In their assessment of the future freight task, they maintained a reduced growth demand forecast at 4.9 million TEU by 2030 and provided an updated expected forecast of 7.0 million TEU by 2030 as outlined in the figure overleaf. The demand forecasts in the 2013 Moorebank Demand Update have been based on 4.9 million TEU throughput which is consistent with the more conservative reduced growth forecast.

Finally, the scope of demand analysis covered the Sydney Greater Metropolitan Area (GMA) which accounts for around 93% of all container import movements ${ }^{1}$ and 75% of all container export movements ${ }^{2}$ bringing the container landside freight task to just less than 4 million TEU by 2030-31 for the Sydney GMA.

Figure 1 : NSW container volume forecasts 2020-2040 (Transport for NSW) ${ }^{3}$

Source: NSW Freight and Ports Strategy 2013

3 Spatial Distribution

3.1 Updated Data Sets

Demand estimates for Moorebank IMT in the EIS are underpinned by postcode level import data provided by the Australian Customs and Border Protection Service (ACBPS).

The initial demand data sets developed for the Moorebank IMT development were derived utilising data sourced from ACBPS in 2011. Following this work, MIC engaged Deloitte to obtain new container data from ACBPS and subsequently update the demand analysis. ACBPS was able to provide more comprehensive data for movements since 2010. The new data set provided in September 2013 includes the following additional information:

- Export data with cargo owner and freight forwarder post code
- Cargo type (for exports)
- Full data sets for import and export containers for financial years 2009 to 2013.

With the new data provided, Deloitte was able to derive a more precise picture of container origins and destinations for the Sydney metropolitan area - in particular, the change of actual container distribution between 2010 and 2013. While ACBPS data provided a current picture

[^2]of container distribution in Sydney, analysis of the NSW Bureau of Transport Statistics' (BTS) employment forecasts was also conducted to provide for a long-term picture of where growth was likely to occur up to 2046 for the transport and warehousing sector in Sydney.

The 2013 ACBPS distributions were forecasted for future periods using BTS' 2012 employment forecast dataset with the transport and warehousing employment growth estimates used as a proxy for future growth in container distribution at the LGA level.

It should be noted that the ACBPS data was provided at a postcode level and BTS employment forecasts were available at the Travel zone (Tz) level in its most disaggregated form. To ensure that datasets are of a similar level of detail, Local Government Areas (LGAs) as defined by the Australian Bureau of Statistics (ABS), were used to develop current and future freight distributions. This process resulted in 38 LGAs that form the possible catchment areas within the Sydney metropolitan area.

3.2 Addition of Industrial Lands data

As part of a separate project (Demand Refresh 2014), where Deloitte had been engaged by MIC to conduct a more comprehensive refresh to Moorebank demand as part of the MIC's ongoing procurement process, additional catchment analysis was carried out looking at other possible datasets to determine drivers and indicators for container distribution.

The project team identified analysis conducted by the NSW Department of Planning and Environment (DoP) on employment lands (Employment Lands Task Force Report 2011) which provided, amongst other things, a stocktake of developed and undeveloped industrial land across Sydney. The report also included discussion on the average lead time involved with the development of industrial land (10 to 15 years).

An area for improvement identified in the original forecast approach for container distributions using BTS data were the relatively low growth rates associated with LGAs in western Sydney that were regarded as growth hotspots for future freight activity - in particular for Blacktown, Camden, Campbelltown, Liverpool and Penrith. Conversely, Fairfield is already regarded as relatively developed with little future growth potential outside of significant industrial re-development. This view was supported by DoP allocation of future industrial land with respect to the Broader Western Sydney Employment Area (WSEA) and South West Growth Centre (SWGC).

As such, the share of future developed industrial land for these LGAs were used as a proxy for future container freight distribution, as part of an alternative scenario showing a higher distribution skew towards Sydney's outer west. The remaining LGA container distribution shares were adjusted and re-distributed based on remaining forecast container volumes.

The revised distribution follows a linear interpolation between known container distributions in 2013 and the share of developed industrial land for the aforementioned LGAs in 2026 (based on a 15-year development lead time from 2011) before remaining constant for the remainder of the forecast period.

3.3 Updated Distribution

The following table compares the original estimated spatial distribution for Moorebank containers by LGA for 2030 with the modified spatial distribution by LGA based on the analysis using the updated data outlined above.

The key changes in the results are the reduction in the original estimates for 2030 for catchments closer to the east including Auburn, Holroyd, Parramatta and Fairfield and the increase in the estimated demand for LGA's with considerable industrial land development including Penrith, Blacktown, Campbelltown and Liverpool. The comparative results for each LGA are outlined in Table 1 below.

Table 1: Comparison of Moorebank IMT Demand by LGA at 2030

LGA	Original Demand Update 2013 (2030)		Modified Demand Update 2013 based on selected DoP distribution (2030)	
	TEU	\%	TEU	\%
Ashfield	0	0.0\%	0	0.0\%
Auburn	96,855	9.3\%	34,655	3.3\%
Bankstown	0	0.0\%	0	0.0\%
Baulkham Hills	17,659	1.7\%	38,151	3.6\%
Blacktown	233,150	22.3\%	270,656	25.8\%
Botany Bay	0	0.0\%	0	0.0\%
Burwood	0	0.0\%	0	0.0\%
Camden	12,017	1.1\%	39,421	3.8\%
Campbelltown	40,111	3.8\%	56,750	5.4\%
Canada Bay	0	0.0\%	0	0.0\%
Canterbury	0	0.0\%	0	0.0\%
Fairfield	200,352	19.2\%	118,639	11.3\%
Holroyd	142,169	13.6\%	65,342	6.2\%
Hornsby	0	0.0\%	0	0.0\%
Hunters Hill	0	0.0\%	0	0.0\%
Hurstville	0	0.0\%	0	0.0\%
Kogarah	0	0.0\%	0	0.0\%
Ku-ring-gai	0	0.0\%	0	0.0\%
Lane Cove	0	0.0\%	0	0.0\%
Leichhardt	0	0.0\%	0	0.0\%
Liverpool	109,415	10.5\%	121,885	11.6\%
Manly	0	0.0\%	0	0.0\%
Marrickville	0	0.0\%	0	0.0\%
Mosman	0	0.0\%	0	0.0\%
North Sydney	0	0.0\%	0	0.0\%
Parramatta	70,012	6.7\%	32,466	3.1\%
Penrith	124,200	11.9\%	270,865	25.8\%
Pittwater	0	0.0\%	0	0.0\%
Randwick	0	0.0\%	0	0.0\%
Rockdale	0	0.0\%	0	0.0\%
Ryde	0	0.0\%	0	0.0\%
Strathfield	0	0.0\%	0	0.0\%
Sutherland Shire	0	0.0\%	0	0.0\%
Sydney	0	0.0\%	0	0.0\%
Warringah	0	0.0\%	0	0.0\%
Waverley	0	0.0\%	0	0.0\%
Willoughby	0	0.0\%	0	0.0\%
Woollahra	0	0.0\%	0	0.0\%
Total	1,045,940	100.0\%	1,048,830	100.0\%

The following maps illustrate the changes in local government areas representing the primary demand catchment areas for IMEX cargo for Moorebank for 2030 between the original analysis and the updated analysis using the new data sets. Figure 2, the original demand analysis by LGA can be compared to Figure $\mathbf{3}$ with the modified analysis in the maps below.

Figure 2 : Original demand update 2013 distribution

Figure 3 : Modified demand update 2013 based on selected DoP distribution

4 Truck Trip Generation

The following section steps through the underlying assumptions and the approach taken to derive the possible number of trucks generated daily from the Moorebank Intermodal terminal as a result of the rail terminal operations and the warehousing operations onsite.

4.1 Assumptions

The assumptions used in the Calculation of Daily Truck Generation at Moorebank IMT are split into two areas:

1. Truck operations for container movements on and off site
2. Truck operations for warehousing related activities - palletised cargo

Table 2: Terminal Truck Assumptions

Assumption		Basis of assumption
Container movement off site	80\%	The amount of available warehousing on site can handle approximately 20% of cargo.
Full container movement to warehousing on-site Freight All Kinds (FAK)	10\%	Assumption on possible lessors of warehousing operating within the market.
Container movement to warehousing on-site Inventory (Inv)	10\%	Assumption on possible lessors of warehousing operating within the market.
Terminal operations	52 weeks per year	Reflecting current operations at Port and other IMT's.
Split between Semi-Trailer and B-Double	80\% / 20\%	Emerging profile at Port Botany.
Semi Trailer - TEU Carrying Capacity - Utilisation - Average TEUs carried	$\begin{aligned} & \cdot 2 \\ & \cdot 80 \% \\ & \cdot 1.6 \end{aligned}$	Emerging profile at Port Botany - known capacity of vehicle and growth in FEU.
B-Double - TEU Carrying Capacity Utilisation Average TEUs carried	$\begin{aligned} & \cdot 3 \\ & \cdot 80 \% \\ & \cdot 2.4 \end{aligned}$	Emerging profile at Port Botany - known capacity of vehicle and growth in FEU.
Truck load matching for Semi-Trailer	30\%	Market disaggregation by operator, customer and geography will limit backloading opportunities. A maximum of 30% backloading has been assumed. This has been applied only to Semi trailers moving containers off site. The effective backloading rate across all Moorebank volume is therefore significantly lower.
Truck distribution	85\% - Weekday 15% - Weekend	Majority of warehouse and distribution facilities operate 5 or 6 day week operations. Truck movements into and out of Port Botany reflect this profile.
Estimated peak hour multiplier of daily traffic	4.2\%	The 4.2% represents $1 / 24$ of the daily flow, i.e. with a flat 24 hour profile, one hour $=$ 4.2\%. Agreed with Roads and Maritime Services (RMS) that it is probable that the 'gate bookings' would be less in the AM peak hour as shippers attempted to avoid peak hour congestion.

Table 3 : Warehousing related truck assumptions

Assumption		Basis of assumption
Equivalent pallets loads per TEU for domestic distribution	25	Container mass limit and cubic capacity will generate average general freight volume of 10-12 tonne per TEU - average food and beverage or retail pallet load is approximately $300-500 \mathrm{~kg}$.
Truck fleet for palletised cargo - outbound	$\begin{aligned} & 34 \% \text { - Semi-trailer } \\ & 66 \% \text { - Rigid } \end{aligned}$	Estimate only based on market knowledge.
Truck fleet for palletised cargo - inbound	100\% - Rigid	Estimate only based on market knowledge.
Pallets per Semi-Trailer	20	Dimensions of standard pallet and truck and applicable weight restrictions.
Pallets per Rigid	8	Dimensions of standard pallet and truck and applicable weight restrictions.
Truck load matching for Semi-Trailer	None	It has been assumed that market disaggregation by operator, customer and geography will limit backloading opportunities.
Truck distribution	95\% - Weekday 5\% - Weekend	Majority of the market receiving palletised goods does not operate weekend loading/unloaded operations.
Estimated peak hour multiplier of daily traffic	4.2\%	The 4.2% represents $1 / 24$ of the daily flow, i.e. with a flat 24 hour profile, one hour $=$ 4.2%. Agreed with the RMS that it is probable that the 'gate bookings' would be less in the AM peak hour as shippers attempted to avoid peak hour congestion.

4.2 Approach to Estimating Truck Trips

In order to estimate the daily heavy vehicles generated from the Moorebank IMT the forecast volumes for the terminal at 2030 were derived. These estimates were broken down into three categories for containers both arriving and departing the site by rail:

- Full container load (FCL) movements arriving or departing the terminal by rail and moving directly offsite or onsite by road;
- FCL's moving within the site between the rail terminal and associated warehousing with all cargo arriving or leaving the warehouses by truck as deconsolidated or palletised cargo; and
- Empty (MT) containers. Warehouse related FCL's were further broken down equally into two segments: Freight all kinds (FAK) to be deconsolidated and delivered; and inventory (INV), which was assumed to be held in the warehouse for a period prior to delivery. It has been assumed that FCL's and MT's would leave and return to the site on a combination of semi-trailers and b-doubles whilst FAK and Inventory would leave and return to the site on a mix of semi-trailers and rigid trucks.

Consultation with Roads and Maritime Services (RMS)

Two sessions were undertaken, in February and April 2014, with representatives from RMS (Network Optimisation and Road Network Analysis team) to review both the approach and Liability limited by a scheme approved under Professional Standards Legislation.
results. They undertook their own analysis based on the underlying demand volumes and assumptions as documented and during a meeting with RMS personnel, they indicated that they reached similar outcomes.

4.2.1 IMEX and Interstate throughput

The terminal is anticipated to handle 500,000 TEU (250,000 TEU inbound and 250,000 TEU outbound) of interstate and close to 1.1 million TEU (547,000 TEU inbound and 499,000 outbound) of IMEX throughput when it reaches full capacity. It is not expected that this would occur before 2040, particularly for interstate traffic. The demand modelling estimated that, by 2030, the Moorebank IMT would be handling approximately 1.046 million TEUs of IMEX cargo per annum (two-way total) and handling approximately 328,000 TEUs of interstate cargo per annum (two-way total) and by 2050 the Terminal would be handling approximately 1.046 million TEUs of IMEX cargo per annum (two-way total) and handling approximately 406,000 TEUs of interstate cargo per annum (two-way total). It is assumed that 94,000 TEU would be transhipped between rail services utilising the terminal. These containers would therefore not be transported between the rail terminal and the warehousing operations on or off site.

4.3 Movements requiring transport off site

Utilising the demand estimates for the respective IMEX and interstate markets, the following steps were taken to identify the nature of the movements into and out of Moorebank IMT and whether the movements were as containers (direct movements to and from the site) or as deconsolidated palletised cargo (via the warehouses). The second consideration was whether or not the internal movements relating to the warehousing on site generated a surplus or a shortfall of empty containers as this would determine whether there would be a requirement to move additional empty containers to and from the site by road.

Table 4 : Onsite empty container imbalance

	Loaded TEU ex rail into Warehouse	Loaded TEU for rail out of Warehouse	Empty TEU surplus (shortfall) generated
IMEX	109,400	34,600	74,800
Interstate 2030	24,000	24,000	0
Interstate 2050	29,800	29,800	0

Once these flows were determined then the calculation of the associated truck movements could be estimated.

4.3.1 IMEX market

1. Of the 1.374 million TEUs expected to be handled through the terminal in 2030, the breakdown between IMEX and interstate are as follows:
1,374,000 TEUs = 1,046,000 IMEX TEUs + 328,000 interstate TEUs
2. Of the 1.046 million IMEX TEUs handled, the breakdown between full imports, full exports and empty containers are as follows:
1,046,000 TEUs = 547,000 full import TEUs + 173,000 full export TEUs + (326,000 empty TEUs
3. Of the 1.046 million total TEUs in 2030 (and 2050), the breakdown between containers inbound and containers outbound are as follows:
1,046,000 TEUs $=547,000$ inbound TEUs $+499,000$ outbound TEUs
4. Of the 547,000 TEUs containers arriving by rail at the site, the breakdown between loaded and empty containers is as follows:
547,000 TEUs = 547,000 loaded TEUs + 0 empty TEUs
5. Of the 499,000 TEUs containers leaving the site by rail, the breakdown between loaded and empty containers is as follows:
499,000 TEUs $=173,000$ loaded TEUs $+326,000$ empty TEUs
6. It was assumed that 80% of the loaded total TEU would move to and from the site as containers and 20% of the loaded total TEU would move through the onsite warehousing. The surplus or shortfall of empty containers were all assumed to move directly to and from the site:
547,000 loaded TEUs from site $=(547,000 \times 80 \%$ direct to site) $+(547,000 \times 20 \%$ to onsite warehousing)
= 437,600 loaded TEUs direct + 109,400 TEUs via warehouses from site by road

173,000 loaded TEUs to site $=(173,000 \times 80 \%$ direct from site $)+(173,000 \times 20 \%$
from onsite warehousing)
= 138,400 loaded TEUs direct + 34,600 TEUs via warehouses to site by road

251,200 empty TEUs to and from site $=326,000$ empty containers from MB by rail + 0 empties into MB by rail - 74,800 surplus empty containers generated on site
7. As outlined above it was assumed that all of the empty containers less the onsite surplus and 80% of the loaded total TEU would move off the site as containers.

827,200 Direct TEUs $=251,200$ empty TEU's $+138,400$ loaded direct into terminal + 437,600 loaded TEUs direct out of terminal
8. The 20% going via warehouses was split equally, resulting in 10% going to warehousing onsite for destuffing (FAK) and direct delivery and 10% going to warehousing for destuffing and placement into inventory (Inv) for later delivery.

```
144,000 TEU's via warehouses =
    = 109,400 TEUs out of warehouses + 34,600 TEU's into warehouses
```

$$
\begin{aligned}
= & (109,400 \times 50 \% \text { FAK) leaving + (109,400 x } 50 \% \text { Inventory) leaving + } \\
& 34,600 \times 50 \% \text { FAK) arriving + (34,600 x } 50 \% \text { Inventory) arriving } \\
= & (54,700 \text { FAK and 54,700 Inv) leaving site from warehouses }+(17,300 \\
& \text { FAK and 17,300 Inv) arriving at site warehouses } \\
\text { Or }= & (54,700 \text { FAK and 17,300 FAK) TEUs into/out of warehouses } \\
& +(54,700 \text { Inv and 17,300 Inv) TEUs into/out of warehouses } \\
= & 72,000 \text { FAK TEUs and 72,000 Inv TEU's arriving and leaving via the } \\
& \quad \text { warehouses }
\end{aligned}
$$

9. This can be further summarised into the total number of IMEX (1.046 million) split into total FCL Direct $(827,200)$ plus total TEUs via the warehousing onsite $(144,000)$ plus empty containers generated onsite $(74,800)$:

1,046,000 TEUs $=827,200$ containers direct to/from customers via road $+72,000$ FAK TEUs + 72,000 Inventory TEUs + 74,800 surplus onsite empty containers

4.3.2 Interstate Market - 2030

1. Of the 1.374 million TEUs expected to be handled through the terminal in 2030, the breakdown between IMEX and interstate are as follows:
```
1,374,000 TEUs = 1,046,000 IMEX TEUs + 328,000 interstate TEUs
```

2. Of the 328,000 interstate TEUs handled, the breakdown between full inbound, full outbound and empty containers are as follows:

328,000 TEUs = 120,000 full inbound TEUs + 120,000 full outbound TEUs + 88,000 empty

3. It was assumed that 80% of the loaded total TEU would move to and from the site as containers and 20% of the loaded total TEU would move through the onsite warehousing. The empty containers were all assumed to move directly to and from the site as there is no surplus or shortfall onsite:

$$
\begin{aligned}
& \text { 120,000 loaded TEUs to site }=(120,000 \times 80 \% \text { direct to site })+(120,000 \times 20 \% \text { to } \\
&\text { onsite warehousing }) \\
&= 96,000 \text { loaded TEUs direct }+24,000 \text { TEUs via } \\
& \text { warehouses }
\end{aligned}
$$

88,000 empty TEUs to and from site $=44,000$ empties into $M B+44,000$ empties out of MB
4. As outlined above it was assumed that all of the empty containers and 80% of the loaded total TEU would move off the site as containers.

```
280,000 Direct TEUs = 88,000 empty TEU's + 96,000 loaded direct into terminal+
96,000 loaded TEUs direct out of terminal
```

5. The 20% going via warehouses was split equally, resulting in 10% going to warehousing onsite for destuffing (FAK) and impending delivery and 10% going to warehousing for destuffing and placement into inventory for later delivery.
```
48,000 TEU's via warehouses =
    = 24,000 TEUs out of warehouses + 24,000 TEU's into warehouses
    = (24,000 x 50% FAK) leaving + (24,000 x 50% Inventory) arriving +
        (24,000 x 50% FAK) leaving + (24,000 x 50% Inventory) arriving
    = (12,000 FAK and 12,000 Inv) leaving site from warehouses + (12,000
        FAK and 12,000 Inv) arriving at site warehouses
    = 24,000 TEUs leaving and 24,000 TEUs arriving via the warehouses
Or
    = (12,000 FAK and 12,000 FAK) TEUs into/out of warehouses
        + (12,000 Inv and 12,000 Inv) TEUs into/out of warehouses
    = 24,000 FAK TEUs and 24,000 Inv TEU's arriving and leaving via the
        warehouses
```

6. Therefore the total number of Interstate TEU's $(328,000)$ can be split into total FCL Direct $(280,000)$ and total TEUs via the warehousing onsite $(48,000)$:
```
328,000 TEUs = 280,000 containers direct to/from customers + 24,000 FAK TEUs
    + 24,000 Inventory TEUs
```


4.3.3 Interstate Market - 2050

1. Of the 1.452 million TEUs expected to be handled through the terminal in 2050, the breakdown between IMEX and interstate are as follows: 1,452,000 TEUs = 1,046,000 IMEX TEUs + 406,000 interstate TEUs
2. Of the 406,000 interstate TEUs handled, the breakdown between full inbound, full outbound and empty containers are as follows:
```
406,000 TEUs = 149,000 full inbound TEUs + 149,000 full outbound TEUs +
    108,000 empty
```

3. It was assumed that 80% of the loaded total TEU would move to and from the site as containers and 20% of the loaded total TEU would move through the onsite warehousing. The empty containers were all assumed to move directly to and from the site:
149,000 loaded TEUs to site $=(149,000 \times 80 \%$ direct to site $)+(149,000 \times 20 \%$ to onsite warehousing)
```
    = 119,200 loaded TEUs direct + 29,800 TEUs via
    warehouses
149,000 loaded TEUs from site = (149,000 x 80% direct from site) + (149,000 x
    20% from onsite warehousing)
    = 119,200 loaded TEUs direct + 29,800 TEUs via
    warehouses
```

108,000 empty TEUs to and from site $=54,000$ empties into $M B+54,000$ empties out of MB
4. As outlined above it was assumed that all of the empty containers and 80% of the loaded total TEU would move off the site as containers

346,400 Direct TEUs $=108,000$ empty TEU's $+119,200$ loaded direct into terminal + 119,200 loaded TEUs direct out of terminal
5. The 20% going via warehouses was split equally, resulting in 10% going to warehousing onsite for destuffing (FAK) and impending delivery and 10% going to warehousing for destuffing and placement into inventory for later delivery.

59,600 TEU's via warehouses $=$
= 29,800 TEUs out of warehouses + 29,800 TEU's into warehouses
$=(29,800 \times 50 \%$ FAK) leaving $+(29,800 \times 50 \%$ Inventory) leaving + (24,000 x 50\% FAK) arriving + (24,000 x 50\% Inventory) arriving
= (14,900 FAK and 14,900 Inv) leaving site from warehouses + (14,900 FAK and 14,900 Inv) arriving at site warehouses
= 29,800 TEUs leaving and 29,800 TEUs arriving via the warehouses
Or
= (14,900 FAK and 14,900 FAK) TEUs into/out of warehouses + (14,900 Inv and 14,900 Inv) TEUs into/out of warehouses
= 29,800 FAK TEUs and 29,800 Inv TEU's arriving and leaving via the warehouses
6. Therefore the total number of Interstate TEU's handled at the terminal at 2050 $(406,000)$ can be split into total FCL Direct $(346,400)$ and total TEUs via the warehousing onsite $(59,600)$:

```
406,000 TEUs = 346,400 containers direct to/from customers + 29,800 FAK TEUs
    + 29,800 Inventory TEUs
```


4.3.4 Combined IMEX and Interstate at 2030

1. Of the 1.374 million TEUs expected to be handled through the terminal in 2030, the breakdown between IMEX and interstate are as follows: 1,374,000 TEUs = 1,046,000 IMEX TEUs + 328,000 interstate TEUs
2. Of the 1.374 million total TEUs in 2030, the breakdown between containers arriving at the site by rail and containers leaving the site by rail are as follows:
1,374,000 TEUs $=711,000$ inbound TEUs $+663,000$ outbound TEUs
3. Of the 711,000 TEUs containers leaving the site by road the breakdown between loaded and empty containers is as follows:
711,000 TEUs $=667,000$ loaded TEUs $+44,000$ empty TEUs
4. Of the 663,000 TEUs leaving the site by rail, 588,000 TEU's arrive at the site by road - the breakdown between loaded and empty containers is as follows:

588,200 TEUs $=293,000$ loaded TEUs $+295,000$ empty TEUs
5. It was assumed that 80% of the loaded total TEU would move to and from the site as containers and 20% of the loaded total TEU would move through the onsite warehousing. The empty containers (less surplus onsite) were all assumed to move directly to and from the site:
293,000 loaded TEUs to site $=(293,000 \times 80 \%$ direct to site $)+(293,000 \times 20 \%$ to onsite warehousing)
= 234,400 loaded TEUs direct + 58,600 TEUs via warehouses

667,000 loaded TEUs from site $=(667,000 \times 80 \%$ direct from site $)+(667,000 x$ 20\% from onsite warehousing)
$=533,600$ loaded TEUs direct $+133,400$ TEUs via warehouses

339,000 empty TEUs to and from site $=\mathbf{2 9 5 , 0 0 0}$ empties into $M B+44,000$ empties out of MB
6. As outlined above it was assumed that all of the empty containers, less any surplus generated through the matching of loads into and out of the warehouse and 80% of the loaded total TEU would move off the site as containers.

1,107,200 Direct TEUs $=414,000$ empty TEU's $-74,800$ surplus empties ex warehouse + 234,400 loaded direct into terminal + 533,600 loaded TEUs direct out of terminal
7. The 20% going via warehouses was split equally, resulting in 10% going to warehousing onsite for destuffing (FAK) and direct delivery and 10% going to warehousing for destuffing and placement into inventory for later delivery.

```
192,000 TEU's via warehouses =
    = 133,400 TEUs out of warehouses + 58,600 TEU's into warehouses
\(=(133,400 \times 50 \%\) FAK) leaving \(+(133,400 \times 50 \%\) Inventory) leaving + (58,600 x 50\% FAK) arriving + (58,600 x 50\% Inventory) arriving
```

$=(66,700$ FAK and 66,700 Inv) leaving site from warehouses + (29,300 FAK and 29,300 Inv) arriving at site warehouses

```
    = 96,000 TEUs leaving and 96,000 TEUs arriving via the warehouses
Or
    = (66,700 FAK and 29,300 FAK) TEUs into/out of warehouses
    + (66,700 Inv and 29,300 Inv) TEUs into/out of warehouses
    = 96,000 FAK TEUs and 96,000 Inv TEU's arriving and leaving via the
        warehouses
```

8. This can be further summarised into the total number of IMEX and Interstate TEU's (1.374 million) split into total FCL Direct $(1.108 \mathrm{~m})$ and total TEUs via the warehousing onsite $(192,000)$ plus empties from onsite $(74,800)$:

1,374,000 TEUs $=1,107,200$ containers direct to/from customers $\mathbf{+}$ 96,000 FAK TEUs + 96,000 Inventory TEUs + 74,800 surplus empties from warehouses

4.3.5 Combined IMEX and Interstate at 2050

1. Of the 1.452 million TEUs expected to be handled through the terminal in 2050 , the breakdown between IMEX and interstate are as follows:
```
1,452,000 TEUs = 1,046,000 IMEX TEUs + 406,000 interstate TEUs
```

2. Of the 1.452 million total TEUs in 2050 , the breakdown between containers arriving at the site by rail and containers leaving the site by rail are as follows:
1,452,000 TEUs $=750,000$ inbound TEUs $+702,000$ outbound TEUs
3. Of the 750,000 TEUs containers leaving the site by road the breakdown between loaded and empty containers is as follows:
750,000 TEUs $=\mathbf{6 9 6}, 000$ loaded TEUs $\boldsymbol{+ 5 4 , 0 0 0}$ empty TEUs
4. Of the 702,000 TEUs leaving the site by rail, 627,200 TEU's arrive at the site by road - the breakdown between loaded and empty containers is as follows:

627,200 TEUs $=322,000$ loaded TEUs $+305,200$ empty TEUs
5. It was assumed that 80% of the loaded total TEU would move to and from the site as containers and 20% of the loaded total TEU would move through the onsite warehousing. The empty containers (less surplus onsite) were all assumed to move directly to and from the site:
322,000 loaded TEUs to site $=(322,000 \times 80 \%$ direct to site $)+(322,000 \times 20 \%$ to onsite warehousing)
= 257,600 loaded TEUs direct $+64,400$ TEUs via warehouses

696,000 loaded TEUs from site $=(696,000 \times 80 \%$ direct from site $)+(696,000 x$ 20% from onsite warehousing)
= 556,800 loaded TEUs direct + 139,200 TEUs via warehouses

359,200 empty TEUs to and from site $=305,200$ empties into $M B+54,000$ empties out of MB
6. As outlined above it was assumed that all of the empty containers, less any surplus generated through the matching of loads into and out of the warehouse and 80% of the loaded total TEU would move off the site as containers.

1,173,600 Direct TEUs $=434,000$ empty TEU's $-74,800$ surplus empties ex warehouse + 257,600 loaded direct into terminal + 556,800 loaded TEUs direct out of terminal
7. The 20% going via warehouses was split equally, resulting in 10% going to warehousing onsite for destuffing (FAK) and direct delivery and 10% going to warehousing for destuffing and placement into inventory for later delivery.

```
203,600 TEU's via warehouses =
    = 139,200 TEUs out of warehouses + 64,400 TEU's into warehouses
    = (139,200 x 50% FAK) leaving + (139,200 x 50% Inventory) leaving +
        (64,400 x 50% FAK) arriving + (64,400 x 50% Inventory) arriving
    = (69,600 FAK and 69,600 Inv) leaving site from warehouses + (32,200
        FAK and 32,200 Inv) arriving at site warehouses
Or
    = (69,600 FAK and 32,200 FAK) TEUs into/out of warehouses
    + (69,600 Inv and 32,200 Inv) TEUs into/out of warehouses
    = 101,800 FAK TEUs and 101,800 Inv TEU's arriving and leaving via the
        warehouses
```

8. This can be further summarised into the total number of IMEX and Interstate TEU's (1.452 million) split into total FCL Direct (1.174 million) and total TEUs via the warehousing onsite $(203,600)$ plus empties from onsite $(74,000)$:
```
1,452,000 TEUs = 1,173,600 containers direct to/from customers + 101,800 FAK
                                    TEUs + 101,800 Inventory TEUs + 74,800 surplus empties from
                                    warehouses
```


4.3.6 Summary

A summary of the various components is outlined in Table 5 below for volumes at 2030 and in Table 6 for volumes at 2050.

Table 5 : Summary of terminal throughput at 2030

		$\begin{aligned} & \text { IMEX } \\ & \text { '000 TEU } \end{aligned}$	Interstate '000 TEU	Total '000 TEU		$\begin{aligned} & \text { FAK (pack/ } \\ & \text { unpack) } \\ & \text { '000 TEU } \end{aligned}$	Warehouse Inventory 'O00TEU
Pathway split/share					80\%	10\%	10\%
Inbound to site by rail from port	Full	547.000	120.000	667.000	533.600	66.700	66.700
	Empty	-	44.000	44.000	44.000		
	Total	547.000	164.000	711.000	577.600		
Outbound from site by rail to port	Full	173.000	120.000	293.000	234.400	29.300	29.300
	Empty	326.000	44.000	370.000	370.000		
	Total	499.000	164.000	663.000	604.400		
	Totals	1,046.000	328.000	1,374.000	1,182.000	96.000	96.000

Table 6 : Summary of Terminal throughput at 2050

		$\begin{gathered} \text { IMEX } \\ \text { '000 TEU } \end{gathered}$	Interstate 'OOO TEU	Total OOO TEU		$\begin{gathered} \text { FAK (pack/ } \\ \text { unpack) } \\ \text { '000 TEU } \end{gathered}$	Warehouse Inventory '000TEU
Pathway split/share					80\%	10\%	10\%
Inbound to site by rail from port	Full	547.000	149.000	696.000	556.800	69.600	69.600
	Empty	-	54.000	54.000	54.000		
	Total	547.000	203.000	750.000	610.800		
Outbound from site by rail to port	Full	173.000	149.000	322.000	257.600	32.200	32.200
	Empty	326.000	54.000	380.000	306.000		
	Total	499.000	203.000	702.000	637.600		
	Totals	1,046.000	406.000	1,452.000	1,248.400	101.800	101.800

The following diagrams illustrate the flows of TEU for each of the IMEX and Interstate markets at 2030 and when the terminal is close to capacity at 2050. Each diagram depicts both the empty and full containers arriving and leaving the terminal by rail and whether the containers stay within the site for handling through the warehouse, or leave the site for unpacking or packing at a customer site.

The volumes for the IMEX market are the same for both 2030 and 2050 as it is assumed that the IMEX terminal will reach capacity close to 2030. Full size diagrams are included in Appendix A.

Figure 4 : Moorebank IMEX flows for 2030

Figure 5: Moorebank Interstate flows for 2030

Figure 6 : Moorebank Terminal interstate container flows at 2050

Full size diagrams are included at Appendix A.

4.4 Direct FCL and empty container movements

4.4.1 IMEX Market

The demand analysis has determined likely future demand for IMEX traffics through the terminal. This total demand has then been allocated to cargo moving in the container between the terminal and the customer directly or via the onsite warehouse for consolidation/deconsolidation. In addition, empty containers move between the terminal and offsite locations. A different transport profile has been assumed for containers (whether loaded or empty) moving directly from the terminal to an offsite location. As the IMEX terminal is anticipated to reach capacity around 2030, the estimates for IMEX truck generation at 2030 have also been used to represent the situation at 2050. The calculations for estimating the number of direct movements and associated truck trips is set out below.

437,600 TEUs leaving the site by road (imports) $=(547,000$ full import TEUs x 80\%)

389,600 TEUs arriving at the site by road (exports) $=(173,000$ full export TEUs x 80\%) + 251,200 empty export TEUs

1. It is assumed that the terminal would be operational 52 weeks per year. 437,600 import TEUs $\div 52=8,415$ TEUs leaving the IMT by road per week

389,600 export TEUs $\div 52=7,492$ TEUs arriving at the IMT by road per week
2. It was assumed that trucks moving containers in and out of Moorebank IMT will comprise 80% semi-trailers and 20% B-Doubles:

Semi-Trailer TEUs (80\% of TEU's arriving at or leaving the terminal):
8,415 TEUs x 80\% $=6,732$ TEUs out on a Semi
7,492 TEUs x 80\% = 5,994 TEUs in on a Semi
B-Double TEUs (20\% of TEU's arriving at or leaving the terminal):
8,415 TEUs $\times 20 \%=1,683$ TEUs out on a B-Double
7,492 TEUs x 20\% = 1,498 TEUs in on a B-Double
3. Each Semi-Trailer truck is assumed to have the capacity to carry 2 TEUs with an utilisation of 80% on average resulting in an average 1.6 TEUs per Semi-Trailer truck. B-double trucks will have the capacity to carry 3 TEUs, and with an average utilisation of 80% the resulting average TEUs per B-Double truck is 2.4. Using these factors, the weekly total loaded truck movements can be derived.

6,732 TEUs out on a Semi $\div 1.6$ TEUs per Semi $=4,208$ Semis out of terminal/per week

5,994 TEUs in on a Semi \div 1.6 TEUs per Semi $=3,746$ Semis into terminal per week

1,683 TEUs out on B-Double $\div 2.4$ TEUs per B-Double $=701$ B-Doubles out of terminal per week

1,498 TEUs in on B-Double $\div 2.4$ TEUs per B-Double $=624$ B-Doubles into terminal per week
4. In addition, each outbound movements outlined above will also generate an inbound movement. It is assumed that some load matching would occur, i.e. rather than every truck having to do an empty return journey to its origin, a portion of the journeys could be loaded both ways. For example, some outbound full import movements could be matched with full export or empty containers inbound, the remainder of the trucks would arrive empty. It was assumed that this load matching would be limited to only 30% of loaded Semi Trailer truck movements (generated off the direction with the more significant volume). All other movements would generate an empty running leg into or out of the terminal.

To generate the empty running trips for each truck type:

```
Empty running trips in = loaded trips out X (1-\% load matching factor)
Empty running trips out = loaded trips in - (loaded trips out - empty running
trips in)
Therefore:
```

4,208 loaded semis outbound X (1-30\% matched loads) $=\mathbf{2 , 9 4 5}$ semis running
empty into terminal per week

3,746 loaded semis inbound - (4,208 loaded semis outbound - 2,945 empty semis inbound) $=\mathbf{2 , 4 8 4}$ semis running empty out of terminal

701 loaded B-Doubles outbound X (1-0\% matched loads) $=701$ B-Doubles running empty into terminal per week

624 loaded B-Doubles inbound X (1-0\% matched loads) = 624 B-Doubles empty out of terminal per week

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips in + loaded trips in + empty trips out

Total B-Double movements	$=701$ loads out +701 empty in +624 loads in +
	624 empty out
	$=1,326$ trips out $+1,326$ trips in
	$=2,651$ trips
Total semi movements	$=4,208$ loads out $+2,945$ empty in $+3,746$ loads
in $+2,484$ empty out	
	$=6,692$ trips out $+6,692$ trips in
	$=13,383$ trips

5. It was then assumed that 85% of container truck movements would occur on weekdays and 15% would occur on weekends based on current profiles at Port Botany. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday.
(2,651 B-Double trips per week X 85\%) $\div 5=451$ B-Double movements per weekday
(13,383 semi trips per week $X 85 \%) \div 5=2,275$ Semi movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 7 below.

Table 7 : Total inbound and outbound IMEX moves per week and per weekday (2030)

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
	Loaded	Outbound	B-Double	701

6. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. This is used because whilst the daily hours of operation may be less than 24 hours, there is an expectation that there would be a desire to avoid peak hour congestion - as a result the peak hour number \% would reduce, however the proportion of interpeak and offpeak volumes could be slightly higher on an hourly basis. This approach was discussed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (for each direction) x $4.2 \%=$ trucks on and off site per hour in AM peak

451 B-Double movements per weekday $\div 2 \times 4.2 \%=9$ B-Double truck movements in AM peak hour in each direction

2,275 Semi movements per weekday $\div 2 \times 4.2 \%=48$ Semi truck movements in AM peak hour in each direction

Table 8 : Average weekday inbound and outbound IMEX Articulated truck movements

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	B-Double	225	9
	Inbound	Semi	1,138	48
		B-Double	225	9

4.4.2 Interstate Market - 2030

The demand analysis also determined likely future demand for interstate traffic through the terminal. This total demand has then been allocated to cargo moving in the container between the terminal and the customer directly or via the onsite
warehouse for consolidation/deconsolidation. In addition, empty containers move between the terminal and offsite locations. A different transport profile has been assumed for containers (whether loaded or empty) moving directly from the terminal to an offsite location. To align the terms used between the IMEX and Interstate traffics, inbound movements into Sydney have been referred to as imports to the terminal, movements out of the terminal by rail have been referred to as exports. The calculations for estimating the number of direct movements and associated truck trips is set out below.

140,000 TEUs leaving the site by road (imports) $=(120,000$ full import TEUs x 80\%) + 44,000 empty import TEUs

```
140,000 arriving at the site by road (exports) = (120,000 full export TEUs x 80%)
+ 44,000 empty export TEUs
```

1. It is assumed that the terminal would be operational 52 weeks per year.

140,000 import TEUs $\div 52=2,692$ TEUs leaving the IMT by road per week

140,000 export TEUs $\div 52=2,692$ TEUs arriving at the IMT by road per week
2. It was assumed that trucks moving containers in and out of Moorebank IMT will comprise 80% semi-trailers and 20% B-Doubles:

Semi-Trailer TEUs (80\% of TEU's arriving at or leaving the terminal):
2,692 TEUs $\times 80 \%=2,154$ TEUs out on a Semi
2,692 TEUs $\times 80 \%=2,154$ TEUs in on a Semi

B-Double TEUs (20\% of TEU's arriving at or leaving the terminal):

2,692 TEUs x 20\% = 538 TEUs out on a B-Double

2,692 TEUs x 20\% = 538 TEUs in on a B-Double
3. Each Semi-Trailer truck is assumed to have the capacity to carry 2 TEUs with an utilisation of 80% on average resulting in an average 1.6 TEUs per Semi-Trailer truck. B-double trucks will have the capacity to carry 3 TEUs, and with an average utilisation of 80% the resulting average TEUs per B-Double truck is 2.4. Using these factors, the weekly total loaded truck movements can be derived.

```
2,154 TEUs out on a Semi \div 1.6 TEUs per Semi = 1,346 Semis out of terminal/per
week
```

2,154 TEUs in on a Semi $\div 1.6$ TEUs per Semi $=1,346$ Semis into terminal per week

538 TEUs out on B-Double $\div 2.4$ TEUs per B-Double $=224$ B-Doubles out of terminal per week

538 TEUs in on B-Double $\div 2.4$ TEUs per B-Double $=224$ B-Doubles into terminal per week
4. In addition, each outbound movements outlined above will also generate an inbound movement. It is assumed that some load matching would occur, i.e. rather than every truck having to do an empty return journey to its origin, a portion of the journeys could be loaded both ways. For example, some outbound full import movements could be matched with full export or empty containers inbound, the remainder of the trucks would arrive empty. It was assumed that this load matching would be limited to only 30% of loaded Semi Trailer truck movements (generated off the direction with the more significant volume). All other movements would generate an empty running leg into or out of the terminal.

To generate the empty running trips for each truck type:
Empty running trips in = loaded trips out X (1-\% load matching factor)
Empty running trips out = loaded trips in - (loaded trips out - empty running trips in)

Therefore:

1,346 loaded semis outbound X (1-30\% matched loads) = 942 semis running empty into terminal per week

1,346 loaded semis inbound - (1,346 loaded semis outbound - 942 empty semis inbound) $\mathbf{=} 942$ semis running empty out of terminal

224 loaded B-Doubles outbound X (1-0\% matched loads) = 224 B-Doubles running empty into terminal per week

224 loaded B-Doubles inbound X (1-0\% matched loads) = 224 B-Doubles empty out of terminal per week

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips in + loaded trips in + empty trips out

Total B-Double movements = 224 loads out +224 empty in +224 loads in + 224 empty out
=449 trips out +449 trips in
$=897$ trips

```
Total semi movements
= 1,346 loads out + 942 empty in + 1,346 loads in
+942 empty out
= 2,288 trips out + 2,288 trips in
=4,577 trips
```

5. It was then assumed that 85% of container truck movements would occur on weekdays and 15% would occur on weekends based on current profiles at Port Botany. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday.
(897 B-Double trips per week X 85\%) $\div 5$ = 153 B-Double movements per weekday

(4,577 semi trips per week $X 85 \%$) $\mathbf{5}=778$ Semi movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 9.

Table 9 : Total inbound and outbound interstate moves per week and per weekday (2030)

Truck Status	Direction on road	Truck Type	Trucks pe week (a)	Average trucks per Weekday (b)
Loaded	Outbound	B-Double	224	38
		Semi	1,346	229
Empty	Inbound	B-Double	224	38
		Semi	942	160
Loaded	Inbound	B-Double	224	38
		Semi	1,346	229
Empty	Outbound	B-Double	224	38
		Semi	942	160
Total Truck movements	Outbound	B-Double	449	76
		Semi	2,288	389
	Inbound	B-Double	449	76
		Semi	2,288	389

6. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is based on one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 hours, there is an expectation that there would be a desire to avoid peak hour congestion - as a result the peak hour number \% would reduce, however the proportion of interpeak and offpeak volumes could be slightly higher on an hourly basis. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (for each direction) x 4.2\% = trucks on and off site per hour in AM peak

153 B-Double movements per weekday $\div 2 \times 4.2 \%=3$ B-Double truck movements in AM peak hour in each direction

778 Semi movements per weekday $\div 2 \times 4.2 \%=16$ Semi truck movements in AM peak hour in each direction

Table 10 : Average weekday interstate inbound and outbound Articulated truck movements

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	B-Double	76	3
	Inbound	Semi	389	16
		B-Double	76	3

4.4.3 Interstate Market - 2050

1. The calculations for estimating the number of direct movements and associated truck trips for the interstate market at 2050 is set out below.

173,200 TEUs leaving the site by road (imports) $=(149,000$ full import TEUs x 80\%) + 54,000 empty import TEUs

173,200 arriving at the site by road (exports) = (149,000 full export TEUs x 80\%) + 54,000 empty export TEUs
2. It is assumed that the terminal would be operational 52 weeks per year.

173,200 import TEUs $\div 52=3,331$ TEUs leaving the IMT by road per week

173,200 export TEUs $\div 52=3,331$ TEUs arriving at the IMT by road per week
3. It was assumed that trucks moving containers in and out of Moorebank IMT will comprise 80% semi-trailers and 20% B-Doubles:

Semi-Trailer TEUs (80\% of TEU's arriving at or leaving the terminal):

3,331 TEUs $\times 80 \%=2,665$ TEUs out on a Semi

3,331 TEUs $\times 80 \%=2,665$ TEUs in on a Semi

B-Double TEUs (20\% of TEU's arriving at or leaving the terminal):

3,331 TEUs x 20\% = 666 TEUs out on a B-Double

3,331 TEUs x 20\% = 666 TEUs in on a B-Double
4. Each Semi-Trailer truck is assumed to have the capacity to carry 2 TEUs with an utilisation of 80% on average resulting in an average 1.6 TEUs per Semi-Trailer truck. B-double trucks will have the capacity to carry 3 TEUs, and with an average
utilisation of 80% the resulting average TEUs per B-Double truck is 2.4. Using these factors, the weekly total loaded truck movements can be derived.

2,665 TEUs out on a Semi $\div 1.6$ TEUs per Semi $=1,665$ Semis out of terminal/per week

2,665 TEUs in on a Semi $\div 1.6$ TEUs per Semi $=1,665$ Semis into terminal per week

666 TEUs out on B-Double $\div 2.4$ TEUs per B-Double $=278$ B-Doubles out of terminal per week

666 TEUs in on B-Double $\div 2.4$ TEUs per B-Double $=278$ B-Doubles into terminal per week
5. In addition, each outbound movements outlined above will also generate an inbound movement. It is assumed that some load matching would occur, i.e. rather than every truck having to do an empty return journey to its origin, a portion of the journeys could be loaded both ways. For example, some outbound full import movements could be matched with full export or empty containers inbound, the remainder of the trucks would arrive empty. It was assumed that this load matching would be limited to only 30% of loaded Semi Trailer truck movements (generated off the direction with the more significant volume). All other movements would generate an empty running leg into or out of the terminal.

To generate the empty running trips for each truck type:
Empty running trips in = loaded trips out X (1-\% load matching factor)
Empty running trips out = loaded trips in - (loaded trips out - empty running trips in)

Therefore:

1,665 loaded semis outbound X (1-30\% matched loads) $=1,166$ semis running empty into terminal per week

1,665 loaded semis inbound - (1,665 loaded semis outbound - 1,166 empty semis inbound) $=1,166$ semis running empty out of terminal

278 loaded B-Doubles outbound X (1-0\% matched loads) $=278$ B-Doubles running empty into terminal per week

278 loaded B-Doubles inbound X (1-0\% matched loads) $=278$ B-Doubles empty out of terminal per week

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

```
Total trips per week = loaded trips out + empty trips in + loaded trips in + empty
trips out
\begin{tabular}{rl} 
Total B-Double movements & \(=278\) loads out +278 empty in +278 loads in + \\
& 278 empty out \\
& \(=555\) trips out +555 trips in \\
& \(=1,110\) trips \\
Total semi movements & \(=1,665\) loads out \(+1,166\) empty in \(+1,665\) loads \\
& in \(+1,166\) empty out \\
& \(=2,831\) trips out \(+2,831\) trips in \\
& \(=5,662\) trips
\end{tabular}
```

6. It was then assumed that 85% of container truck movements would occur on weekdays and 15% would occur on weekends based on current profiles at Port Botany. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday.

(1,110 B-Double trips per week X 85%) $\div 5=189$ B-Double movements per weekday

(5,662 semi trips per week $X 85 \%$) $\div 5=963$ Semi movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 11.

Table 11: Total inbound and outbound interstate related moves per week and per weekday (2050)

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	B-Double	278	47
		Semi	1,665	283
Empty	Inbound	B-Double	278	47
		Semi	1,166	198
Loaded	Inbound	B-Double	278	47
		Semi	1,665	283
Empty	Outbound	B-Double	278	47
		Semi	1,166	198
Total Truck movements	Outbound	B-Double	555	94
		Semi	2,831	481
	Inbound	B-Double	555	94
		Semi	2,831	481

7. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is based on one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may
be less than 24 hours, there is an expectation that there would be a desire to avoid peak hour congestion - as a result the peak hour number \% would reduce, however the proportion of interpeak and offpeak volumes could be slightly higher on an hourly basis. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (for each direction) x $4.2 \%=$ trucks on and off site per hour in AM peak

189 B-Double movements per weekday $\div 2 \times 4.2 \%=4$ B-Double truck movements in AM peak hour in each direction

963 Semi movements per weekday $\div 2 \times 4.2 \%=20$ Semi truck movements in AM peak hour in each direction

Table 12 : Average weekday interstate inbound and outbound Articulated truck movements

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	B-Double	94	4
	Inbound	Semi	481	20
		B-Double	94	4

4.4.4 Combined IMEX and Interstate movements at 2030

1. As outlined above, the demand analysis has determined likely future demand for both IMEX and interstate markets where Sydney is either an origin or a destination. For the purposes of simplification all international and interstate cargo destined for the Sydney market is referred to in the following as imports - all international and interstate cargo leaving the Sydney market is referred to as exports.

577,600 TEUs leaving the site by road (imports) $=$ 533,600 full import TEUs + 44,000 empty import TEUs

529,600 TEUs arriving at the site by road (exports) $=234,400$ full export TEUs +
295,200 empty export TEUs
2. It is assumed that the terminal would be operational 52 weeks per year. 577,600 import TEUs $\div 52=11,108$ TEUs leaving the IMT by road per week 529,600 export TEUs $\div 52=10,185$ TEUs arriving at the IMT by road per week
3. It was assumed that trucks moving containers in and out of Moorebank IMT will comprise 80% semi-trailers and 20% B-Doubles:

Semi-Trailer TEUs (80\% of TEU's arriving at or leaving the terminal):

```
11,108 TEUs \(\times 80 \%=8,886\) TEUs out on a Semi
10,185 TEUs \(\times 80 \%=8,148\) TEUs in on a Semi
B-Double TEUs (20\% of TEU's arriving at or leaving the terminal):
11,108 TEUs \(\times 20 \%=2,222\) TEUs out on a B-Double
10,185 TEUs x \(20 \%=2,037\) TEUs in on a B-Double
```

4. Each Semi-Trailer truck is assumed to have the capacity to carry 2 TEUs with an utilisation of 80% on average resulting in an average 1.6 TEUs per Semi-Trailer truck. B-double trucks will have the capacity to carry 3 TEUs, and with an average utilisation of 80% the resulting average TEUs per B-Double truck is 2.4. Using these factors, the weekly total loaded truck movements can be derived.

8,886 TEUs out on a Semi $\div 1.6$ TEUs per Semi $=5,554$ Semis out of terminal/per week

8,148 TEUs in on a Semi \div 1.6 TEUs per Semi $=5,092$ Semis into terminal per week

2,222 TEUs out on B-Double $\div 2.4$ TEUs per B-Double $=926$ B-Doubles out of terminal per week

2,037 TEUs in on B-Double $\div 2.4$ TEUs per B-Double $=849$ B-Doubles into terminal per week
5. In addition, each outbound movements outlined above will also generate an inbound movement. It is assumed that some load matching would occur, i.e. rather than every truck having to do an empty return journey to its origin, a portion of the journeys could be loaded both ways. For example, some outbound full import movements could be matched with full export or empty containers inbound, the remainder of the trucks would arrive empty. It was assumed that this load matching would be limited to only 30% of loaded Semi Trailer truck movements (generated off the direction with the more significant volume). All other movements would generate an empty running leg into or out of the terminal.

To generate the empty running trips for each truck type:
Empty running trips in = loaded trips out X (1-\% load matching factor)

Empty running trips out = loaded trips in - (loaded trips out - empty running trips in)

Therefore:

5,554 loaded semis outbound $X(1-30 \%$ matched loads) $=3,888$ semis running
empty into terminal per week

5,092 loaded semis inbound - (5,554 loaded semis outbound - 3,888 empty semis inbound) $=3,426$ semis running empty out of terminal

926 loaded B-Doubles outbound X (1-0\% matched loads) $=926$ B-Doubles running empty into terminal per week

849 loaded B-Doubles inbound X (1-0\% matched loads) $=849$ B-Doubles empty out of terminal per week

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

```
Total B-Double movements = 926 loads out + 849 empty out + 849 loads in +
                    926 empty in
    = 1,774 trips out + 1,774 trips in
    = 3,549 trips
    = 5,554 loads out + 3,426 empty out + 5,092 loads
    in + 3,888 empty in
    = 8,980 trips out + 8,980 trips in
    = 17,960 trips
```

6. It was then assumed that 85% of container truck movements would occur on weekdays and 15% would occur on weekends based on current profiles at Port Botany. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday.
> (3,549 B-Double trips per week X 85\%) $\div 5$ = 603 B-Double movements per weekday

(17,960 semi trips per week $X 85 \%) \div 5=3,053$ Semi movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 13 below.

Table 13 : Total combined inbound and outbound moves per week and per weekday (2030)

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	B-Double	926	157
		Semi	5,554	944
Empty	Inbound	B-Double	926	157
		Semi	3,888	661
Loaded	Inbound	B-Double	849	144
		Semi	5,092	866
Empty	Outbound	B-Double	849	144
	Total Truck movements	Outbound	Semi	3,426
		Inbound	S-Double	1,774
		8,980	302	
		B-Double	1,774	302

7. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is based on one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 hours, there is an expectation that there would be a desire to avoid peak hour congestion - as a result the peak hour number \% would reduce, however the proportion of interpeak and offpeak volumes could be slightly higher on an hourly basis. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ in each direction x $4.2 \%=$ trucks on and off site per hour in AM peak

302 B-Double movements per weekday $\div 2 \times 4.2 \%=13$ B-Double truck movements in AM peak hour in each direction

1,527 Semi movements per weekday $\div 2 \times 4.2 \%=64$ Semi truck movements in AM peak hour in each direction

Table 14 : Combined average weekday inbound and outbound Articulated truck movements

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	B-Double	302	13
	Inbound	Semi	1,527	64
		B-Double	302	13

4.4.5 Combined IMEX and Interstate movements at 2050

1. As outlined above, the demand analysis has determined likely future demand for both IMEX and interstate markets where Sydney is either an origin or a destination. For the
purposes of simplification all international and interstate cargo destined for the Sydney market is referred to in the following as imports - all international and interstate cargo leaving the Sydney market is referred to as exports.

610,800 TEUs leaving the site by road (imports) $=$ 556,800 full import TEUs + 54,000 empty import TEUs

562,800 TEUs arriving at the site by road (exports) $=257,600$ full export TEUs + 305,200 empty export TEUs
2. It is assumed that the terminal would be operational 52 weeks per year.

610,800 import TEUs $\div 52=11,746$ TEUs leaving the IMT by road per week
562,800 export TEUs $\div 52=10,823$ TEUs arriving at the IMT by road per week
3. It was assumed that trucks moving containers in and out of Moorebank IMT will comprise 80% semi-trailers and 20% B-Doubles:

Semi-Trailer TEUs (80\% of TEU's arriving at or leaving the terminal):
11,746 TEUs x $80 \%=9,397$ TEUs out on a Semi

10,823 TEUs $\times 80 \%=8,658$ TEUs in on a Semi

B-Double TEUs (20\% of TEU's arriving at or leaving the terminal):
11,746 TEUs x 20\% = 2,349 TEUs out on a B-Double
10,823 TEUs $\times 20 \%=2,165$ TEUs in on a B-Double
4. Each Semi-Trailer truck is assumed to have the capacity to carry 2 TEUs with an utilisation of 80% on average resulting in an average 1.6 TEUs per Semi-Trailer truck. B-double trucks will have the capacity to carry 3 TEUs, and with an average utilisation of 80% the resulting average TEUs per B-Double truck is 2.4. Using these factors, the weekly total loaded truck movements can be derived.

9,397 TEUs out on a Semi $\div 1.6$ TEUs per Semi $=5,873$ Semis out of terminal/per week

8,658 TEUs in on a Semi $\div 1.6$ TEUs per Semi $=5,412$ Semis into terminal per week

2,349 TEUs out on B-Double $\div 2.4$ TEUs per B-Double $=979$ B-Doubles out of terminal per week

2,165 TEUs in on B-Double $\div 2.4$ TEUs per B-Double $=902$ B-Doubles into terminal per week
5. In addition, each outbound movements outlined above will also generate an inbound movement. It is assumed that some load matching would occur, i.e. rather than every truck having to do an empty return journey to its origin, a portion of the journeys could be loaded both ways. For example, some outbound full import movements could be matched with full export or empty containers inbound, the remainder of the trucks would arrive empty. It was assumed that this load matching would be limited to only 30% of loaded Semi Trailer truck movements (generated off the direction with the more significant volume). All other movements would generate an empty running leg into or out of the terminal.

To generate the empty running trips for each truck type:
Empty running trips in = loaded trips out X (1-\% load matching factor)
Empty running trips out = loaded trips in - (loaded trips out - empty running trips in)

Therefore:

5,873 loaded semis outbound X (1-30\% matched loads) $=4,111$ semis running empty into terminal per week

5,412 loaded semis inbound - (5,873 loaded semis outbound - 4,111 empty semis inbound) $=3,650$ semis running empty out of terminal

979 loaded B-Doubles outbound X (1-0\% matched loads) $=979$ B-Doubles running empty into terminal per week

902 loaded B-Doubles inbound X (1-0\% matched loads) $=902$ B-Doubles empty out of terminal per week

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

$$
\begin{aligned}
\text { Total B-Double movements } & =979 \text { loads out }+902 \text { empty out }+902 \text { loads in }+ \\
& 979 \text { empty in } \\
& =1,881 \text { trips out }+1,881 \text { trips in } \\
& =3,762 \text { trips } \\
& =5,873 \text { loads out }+3,650 \text { empty out }+5,412 \text { loads } \\
\text { Total semi movements } \quad & \\
& =9,523 \text { trips out }+9,523 \text { trips in } \\
& =19,045 \text { trips }
\end{aligned}
$$

6. It was then assumed that 85% of container truck movements would occur on weekdays and 15% would occur on weekends based on current profiles at Port Botany. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday.
(3,762 B-Double trips per week $X 85 \%) \div 5=\begin{gathered}639 \text { B-Double movements per } \\ \text { weekday }\end{gathered}$ weekday
(19,045 semi trips per week $X 85 \%) \div 5=3,238$ Semi movements per weekday
Total inbound and outbound moves per week and per weekday can be summarised in
Table 15 below.
Table 15 : Total combined inbound and outbound moves per week and per weekday (2050)

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
	Loaded	Outbound	B-Double	979

7. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is based on one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 hours, there is an expectation that there would be a desire to avoid peak hour congestion - as a result the peak hour number \% would reduce, however the proportion of interpeak and offpeak volumes could be slightly higher on an hourly basis. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ in each direction $\times 4.2 \%=$ trucks on and off site per hour in AM peak

639 B-Double movements per weekday $\div 2 \times 4.2 \%=13$ B-Double truck movements in AM peak hour in each direction

3,238 Semi movements per weekday $\div 2 \times 4.2 \%=68$ Semi truck movements in AM peak hour in each direction

Table 16 : Average combined weekday inbound and outbound Articulated truck movements 2050

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	B-Double	320	13
	Inbound	Semi	1,619	68
		B-Double	320	13

4.5 Movements to and from the Warehouses

4.5.1 IMEX Market

Warehouse generated truck traffic movements were estimated using a similar methodology to the derivation of container truck movements, with some variation to the underlying assumptions. The most significant changes to the assumptions were:

- the makeup of the fleet;
- the proportion of movements occurring during the week; and
- the level of load matching.

The following steps were taken to derive the daily truck movements in and out of Moorebank IMT for cargo handled through the warehouses:

1. The Moorebank IMT will have enough on-site warehousing capacity to handle approximately 20% of all full TEUs. It is assumed that half of these will be held in inventory in onsite warehousing for a period of weeks with the rest being general cargo (FAK) which would be deconsolidated and distributed offsite within a few days or arrive onsite for consolidation and export.

547,000 full inbound TEUs x 10\% FAK = 54,700 TEU's FAK for distribution from site

547,000 full inbound TEUs x 10\% Inventory = 54,700 TEU's Inventory for distribution from site

173,000 full outbound TEU's $\times 10 \%$ FAK $=17,300$ TEU's FAK arriving at site for consolidation

173,000 full outbound TEU's $\times 10 \%$ Inventory $=17,300$ TEU's Inventory arriving at site for consolidation
2. It is assumed that the terminal would be operational 52 weeks per year.

54,700 FAK + 54,700 Inventory TEUs $\div 52=2,104$ TEUs into warehouse and distributed off site each week

17,300 FAK + 17,300 Inventory TEUs $\div 52$ = 665 TEUs arrive onto site and into warehouse each week
3. It is assumed that each TEU, when deconsolidated will generate approximately 25 pallet loads for domestic distribution:

2,104 TEU's x 25 equivalent pallet loads per TEU = 52,596 equivalent pallet loads into warehouse and distributed off site by road each week
665×25 equivalent pallet loads per TEU = 16,635 equivalent pallet loads into warehouse by road and railed offsite each week
4. The truck fleet profile for palletised cargo will be different to that for direct FCL and MT container movements to and from the Moorebank terminal. It is assumed that trucks moving pallets out of Moorebank IMT warehousing will comprise of 34% semi-trailers and 66% rigid trucks whilst 100% of the palletised cargo arriving at the site will be carried by rigid trucks:

Deliveries from Moorebank warehouses:
52,596 pallets per week x $34 \%=17,883$ pallets out on semi-trailer trucks

52,596 pallets per week x 66\% = 34,713 pallets out on rigid trucks

Deliveries to Moorebank warehouses:
16,635 pallets per week x 100\% = 16,635 pallets in on rigid trucks
5. Semi-trailer trucks are likely to carry, on average 20 pallets per truck whilst rigid trucks have been assumed to carry, on average 8 pallets per load. Dividing the number of pallets by each average load determines the average number of loaded truck movements per week into and out of the warehouses.

Deliveries from Moorebank warehouses.
17,883 pallets in semis per week $\div 20$ pallets per truck $=894$ loaded semi-trailer truck movements out per week

34,713 pallets in rigids per week $\div 8$ pallets per truck $=4,339$ loaded rigid truck movements out per week

Deliveries to Moorebank warehouses:
16,625 pallets in rigids per week $\div 8$ pallets per truck $=2,079$ loaded rigid truck movements in per week
6. It is assumed that there will be no truck load matching for palletised cargo movement to and from the Moorebank IMT warehouses. Therefore all movements would generate an empty running leg into or out of the terminal. By adding the total inbound and outbound movements the total truck movements can be estimated.

Empty running trips in = loaded trips out X (1-\% load matching factor)

894 semis empty into terminal per week $=894$ loaded semis outbound X (1-0\% matched loads)

4,339 empty rigids into terminal per week $=4,339$ loaded rigids outbound X (10\% matched loads)

2,079 empty rigids out of terminal per week $=2,079$ loaded rigids inbound X (1 0\% matched loads)

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

```
Total trips per week = loaded trips out + empty trips out + loaded trips in +
empty trips in
Total semi movements \(=894\) loads out +0 empty out +0 loads in +894
    empty in
    \(=894\) trips out +894 trips in
    \(=1,788\) trips per week
Total rigid movements \(=4,339\) loads out \(+2,079\) empty out \(+2,079\) loads in +
    4,339 empty in
    \(=6,419\) trips out \(+6,419\) trips in
    = 12,837 trips per week
```

7. It was then assumed that 95% of container truck movements would occur on weekdays and 5% would occur on weekends. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday
(1,788 semi-truck movements per week X 95\%) $\div 5=340$ semi-trailer movements per weekday
(12,837 rigid truck movements per week X 95\%) $\div 5=2,439$ rigid truck movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 17 below.

Table 17 : Average weekly inbound and outbound IMEX warehouse related road movements

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	Semi	894	170
		Rigid	4,339	824
Empty	Inbound	Semi	894	170
		Rigid	4,339	824
Loaded	Inbound	Semi	0	-
		Rigid	2,079	395
Empty Total Truck movements	Outbound	Semi	0	-
	Inbound	Rigid	2,079	395
		Semi	894	170

8. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is one 24th of the daily value. This is used because whilst the daily hours of operation may be less than 24 , there is an expectation that there would be a desire to avoid peak hour congestion so the peak hour number \% would reduce. This approach was discussed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (in each direction) x 4.2\% = trucks on and off site per hour in AM peak in each direction

340 semi movements per weekday $\div 2 \times 4.2 \%=7$ semi-truck movements in $A M$ peak hour in each direction

2,439 rigid movements per weekday $\div 2 \times 4.2 \%=51$ rigid truck movements in AM peak hour in each direction

Table 18 : Average IMEX warehouse related weekday inbound and outbound truck movements 2030

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	Semi	170	7
		Inbound	Remid	1,220

Note: Some truck numbers have been rounded to the nearest whole number

4.5.2 Interstate Containers 2030

The following steps were taken to derive the daily truck movements in and out of Moorebank IMT for interstate cargo handled through the warehouses:

1. As for the IMEX, the Moorebank IMT will have enough on-site warehousing capacity to handle approximately 20% of all full TEUs. It is assumed that half of these will be held in inventory in onsite warehousing for a period of weeks with the rest being general cargo (FAK) which would be deconsolidated and distributed offsite within a few days or arrive onsite for consolidation and export.

120,000 full inbound TEUs x 10\% FAK = 12,000 TEU's FAK for distribution from

 site120,000 full inbound TEUs $\boldsymbol{x} 10 \%$ Inventory $=12,000$ TEU's Inventory for distribution from site

120,000 full outbound TEU's x 10\% FAK = 12,000 TEU's FAK arriving at site for consolidation

120,000 full outbound TEU's x 10\% Inventory = 12,000 TEU's Inventory arriving at site for consolidation
2. It is assumed that the terminal would be operational 52 weeks per year.

$$
\begin{aligned}
& \text { 12,000 FAK }+12,000 \text { Inventory TEUs } \div 52=462 \text { TEUs into warehouse and } \\
& \text { distributed off site each week }
\end{aligned}
$$

12,000 FAK + 12,000 Inventory TEUs $\div 52=462$ TEUs arrive onto site and into warehouse each week
3. It is assumed that each TEU, when deconsolidated will generate approximately 25 pallet loads for domestic distribution:

462 TEU's x 25 equivalent pallet loads per TEU = 11,538 equivalent pallet loads into warehouse and distributed off site by road each week

462 TEU's x 25 equivalent pallet loads per TEU $=11,538$ equivalent pallet loads into warehouse by road and railed offsite each week
4. The truck fleet profile for palletised cargo will be different to that for direct FCL and MT container movements to and from the Moorebank terminal. It is assumed that trucks moving pallets out of Moorebank IMT warehousing will comprise of 34% semi-trailers and 66% rigid trucks whilst 100% of the palletised cargo arriving at the site will be carried by rigid trucks:

Deliveries from Moorebank warehouses:
11,538 pallets per week $x 34 \%=3,923$ pallets out on semi-trailer trucks

11,538 pallets per week $x 66=7,615$ pallets out on rigid trucks
 Deliveries to Moorebank warehouses:
 11,538 pallets per week $\times 100 \%=11,538$ pallets in on rigid trucks

5. Semi-trailer trucks are likely to carry, on average 20 pallets per truck whilst rigid trucks have been assumed to carry, on average 8 pallets per load. Dividing the number of pallets by each average load determines the average number of loaded truck movements per week into and out of the warehouses.

Deliveries from Moorebank warehouses:
3,923 pallets in semis per week $\div 20$ pallets per truck $=196$ loaded semi-trailer truck movements out per week

7,615 pallets in rigids per week $\div 8$ pallets per truck $=952$ loaded rigid truck movements out per week

Deliveries to Moorebank warehouses:
11,538 pallets in rigids per week $\div 8$ pallets per truck = 1,442 loaded rigid truck movements in per week
6. It is assumed that there will be no truck load matching for palletised cargo movement to and from the Moorebank IMT warehouses. Therefore all movements would generate an empty running leg into or out of the terminal. By adding the total inbound and outbound movements the total truck movements can be estimated.

Empty running trips in = loaded trips out X (1-\% load matching factor)
196 semis empty into terminal per week $=196$ loaded semis outbound X (1-0\% matched loads)

952 empty rigids into terminal per week = 952 loaded rigids outbound X (1-0\% matched loads)

1,442 empty rigids out of terminal per week $=1,442$ loaded rigids inbound X (10\% matched loads)

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

Total semi movements = 196 loads out +0 empty out +0 loads in +196 empty in
$=196$ trips out +196 trips in
= 392 trips per week

Total rigid movements $\quad=952$ loads out $+1,442$ empty out $+1,442$ loads in + 952 empty in
 $=2,394$ trips out $+2,394$ trips in
 = 4,788 trips per week

7. It was then assumed that 95% of container truck movements would occur on weekdays and 5% would occur on weekends. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday
(392 semi-truck movements per week X 95\%) $\div 5=75$ semi-trailer movements per weekday
(4,788 rigid truck movements per week $X 95 \%) \div 5=910$ rigid truck movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 19 below.

Table 19 : Average weekly interstate inbound and outbound warehouse related road movements 2030

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	Semi	196	37
		Rigid	952	181
Empty	Inbound	Semi	196	37
	Inbound	Rigid	952	181
		Semi	0	-
Empty	Outbound	Rigid	1,442	274
		Semi	0	-
Total Truck movements	Outbound	Rigid	1,442	274
		Semi	Rigid	2,394

8. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 , there is an expectation that there would be a desire to avoid peak hour congestion so the peak hour number \% would reduce. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (in each direction) $x 4.2 \%=$ trucks on and off site per hour in AM peak in each direction

75 semi movements per weekday $\div 2 \times 4.2 \%=2$ semi-truck movements in AM peak hour in each direction

910 rigid movements per weekday $\div 2 \times 4.2 \%=19$ rigid truck movements in $A M$ peak hour in each direction

Table 20 : Total average weekday interstate related warehouse truck movements

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	Semi	37	2
		Rigid	455	19
		Semi	37	2

4.5.3 Interstate Containers 2050

The following steps were taken to derive the daily truck movements in and out of Moorebank IMT for interstate cargo handled through the warehouses:

1. As for the IMEX, the Moorebank IMT will have enough on-site warehousing capacity to handle approximately 20% of all full TEUs. It is assumed that half of these will be held in inventory in onsite warehousing for a period of weeks with the rest being general cargo (FAK) which would be deconsolidated and distributed offsite within a few days or arrive onsite for consolidation and export.

149,000 full inbound TEUs x 10\% FAK = 14,900 TEU's FAK for distribution from site

149,000 full inbound TEUs x 10\% Inventory = 14,900 TEU's Inventory for distribution from site

149,000 full outbound TEU's x 10\% FAK = 14,900 TEU's FAK arriving at site for consolidation

149,000 full outbound TEU's x 10\% Inventory $=14,900$ TEU's Inventory arriving at site for consolidation
2. It is assumed that the terminal would be operational 52 weeks per year.

> 14,900 FAK + 14,900 Inventory TEUs $\div 52=573$ TEUs into warehouse and distributed off site each week

> 14,900 FAK + 14,900 Inventory TEUs $\div 52=573$ TEUs arrive onto site and into warehouse each week
3. It is assumed that each TEU, when deconsolidated will generate approximately 25 pallet loads for domestic distribution:

573 TEU's x 25 equivalent pallet loads per TEU = 14,327 equivalent pallet loads into warehouse and distributed off site by road each week

573 TEU's x 25 equivalent pallet loads per TEU = 14,327 equivalent pallet loads into warehouse by road and railed offsite each week
4. The truck fleet profile for palletised cargo will be different to that for direct FCL and MT container movements to and from the Moorebank terminal. It is assumed that trucks moving pallets out of Moorebank IMT warehousing will comprise of 34% semi-trailers and 66% rigid trucks whilst 100% of the palletised cargo arriving at the site will be carried by rigid trucks:

Deliveries from Moorebank warehouses:
14,327 pallets per week $x 34 \%=4,871$ pallets out on semi-trailer trucks

14,327 pallets per week $\times 66 \%=9,456$ pallets out on rigid trucks

Deliveries to Moorebank warehouses:
14,327 pallets per week $\times 100 \%=14,327$ pallets in on rigid trucks
5. Semi-trailer trucks are likely to carry, on average 20 pallets per truck whilst rigid trucks have been assumed to carry, on average 8 pallets per load. Dividing the number of pallets by each average load determines the average number of loaded truck movements per week into and out of the warehouses.

Deliveries from Moorebank warehouses:
4,871 pallets in semis per week $\div 20$ pallets per truck $=244$ loaded semi-trailer truck movements out per week

9,456 pallets in rigids per week $\div 8$ pallets per truck $=1,182$ loaded rigid truck movements out per week

Deliveries to Moorebank warehouses:
14,327 pallets in rigids per week $\div 8$ pallets per truck $=1,791$ loaded rigid truck movements in per week
6. It is assumed that there will be no truck load matching for palletised cargo movement to and from the Moorebank IMT warehouses. Therefore all movements would generate an empty running leg into or out of the terminal. By adding the total inbound and outbound movements the total truck movements can be estimated.

Empty running trips in = loaded trips out \boldsymbol{X} (1 - \% load matching factor)

244 semis empty into terminal per week $=244$ loaded semis outbound X (1-0\% matched loads)

1,182 empty rigids into terminal per week $=1,182$ loaded rigids outbound X (10\% matched loads)

1,791 empty rigids out of terminal per week $=1,791$ loaded rigids inbound X (10\% matched loads)

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

Total semi movements = 244 loads out $\mathbf{+} 0$ empty out $\mathbf{+} 0$ loads in $\mathbf{+} \mathbf{2 4 4}$ empty in
$=244$ trips out +244 trips in
= 487 trips per week
Total rigid movements $=1,182$ loads out $+1,791$ empty out $+1,791$ loads in + 1,182 empty in
= 2,973 trips out + 2,973 trips in
= 5,946 trips per week
7. It was then assumed that 95% of container truck movements would occur on weekdays and 5% would occur on weekends. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday
(487 semi-truck movements per week X 95\%) $\div 5=93$ semi-trailer movements per weekday
(5,946 rigid truck movements per week $X 95 \%$) $\div 5=1,130$ rigid truck movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 21 below.

Table 21: Average weekly inbound and outbound warehouse related road movements

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	Semi	244	46
		Rigid	1,182	225
Empty	Inbound	Semi	244	46
		Rigid	1,182	225
Loaded	Inbound	Semi	0	-
		Rigid	1,791	340

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Empty	Outbound	Semi	0	-
		Rigid	1,791	340
	Outbound	Semi	244	46
	Inbound	Rigid	2,973	565
		Semi	244	46

8. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 , there is an expectation that there would be a desire to avoid peak hour congestion so the peak hour number $\%$ would reduce. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (in each direction) x $4.2 \%=$ trucks on and off site per hour in AM peak in each direction

93 semi movements per weekday $\div 2 \times 4.2 \%=2$ semi-truck movements in AM peak hour in each direction

1,130 rigid movements per weekday $\div 2 \times 4.2 \%=24$ rigid truck movements in AM peak hour in each direction

Table 22 : Average total weekday truck movements for interstate related warehouse activity at 2050

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	Semi	46	2
		Rigid	565	24
	Inbound	Semi	46	2
		Rigid	565	24

4.5.4 Combined IMEX and Interstate Containers 2030

Warehouse generated truck traffic movements were estimated using a similar methodology to the derivation of container truck movements, with some variation to the underlying assumptions. The most significant changes to the assumptions were:

- the makeup of the fleet;
- the proportion of movements occurring during the week; and
- the level of load matching.

The following steps were taken to derive the daily truck movements in and out of Moorebank IMT for cargo handled through the warehouses:

1. The Moorebank IMT will have enough on-site warehousing capacity to handle approximately 20% of all full TEUs. It is assumed that half of these will be held in inventory in onsite warehousing for a period of weeks with the rest being general cargo (FAK) which would be deconsolidated and distributed offsite within a few days or arrive onsite for consolidation and export.

667,000 full inbound TEUs x 10\% FAK = 66,700 TEU's FAK for distribution from site

667,000 full inbound TEUs x 10\% Inventory $=66,700$ TEU's Inventory for distribution from site

293,000 full outbound TEU's x 10\% FAK = 29,300 TEU's FAK arriving at site for consolidation

293,000 full outbound TEU's x 10\% Inventory = 29,300 TEU's Inventory arriving at site for consolidation
2. It is assumed that the terminal would be operational 52 weeks per year.

66,700 FAK + 66,700 Inventory TEUs $\div 52=2,565$ TEUs into warehouse and distributed off site each week

29,300 FAK + 29,300 Inventory TEUs $\div 52$ = 1,127 TEUs arrive onto site and into warehouse each week
3. It is assumed that each TEU, when deconsolidated will generate approximately 25 pallet loads for domestic distribution:

2,565 TEU's x 25 equivalent pallet loads per TEU $=64,135$ equivalent pallet loads into warehouse and distributed off site by road each week
$1,127 \times 25$ equivalent pallet loads per TEU $=28,173$ equivalent pallet loads into warehouse by road and railed offsite each week
4. The truck fleet profile for palletised cargo will be different to that for direct FCL and MT container movements to and from the Moorebank terminal. It is assumed that trucks moving pallets out of Moorebank IMT warehousing will comprise of 34% semi-trailers and 66% rigid trucks whilst 100% of the palletised cargo arriving at the site will be carried by rigid trucks:

Deliveries from Moorebank warehouses:
64,135 pallets per week $x 34 \%=21,806$ pallets out on semi-trailer trucks
64,135 pallets per week $\times 66 \%=42,329$ pallets out on rigid trucks

Deliveries to Moorebank warehouses:
28,173 pallets per week $\times 100 \%=28,173$ pallets in on rigid trucks
5. Semi-trailer trucks are likely to carry, on average 20 pallets per truck whilst rigid trucks have been assumed to carry, on average 8 pallets per load. Dividing the number of pallets by each average load determines the average number of loaded truck movements per week into and out of the warehouses.

Deliveries from Moorebank warehouses:
21,806 pallets in semis per week $\div 20$ pallets per truck $=1,090$ loaded semitrailer truck movements out per week

42,329 pallets in rigids per week $\div 8$ pallets per truck $=5,291$ loaded rigid truck movements out per week

Deliveries to Moorebank warehouses:
28,173 pallets in rigids per week $\div 8$ pallets per truck $=$ 3,522 loaded rigid truck movements in per week
6. It is assumed that there will be no truck load matching for palletised cargo movement to and from the Moorebank IMT warehouses. Therefore all movements would generate an empty running leg into or out of the terminal. By adding the total inbound and outbound movements the total truck movements can be estimated.

Empty running trips in = loaded trips out X (1-\% load matching factor)
1,090 semis empty into terminal per week = 1,090 loaded semis outbound X (10\% matched loads)

5,291 empty rigids into terminal per week = 5,291 loaded rigids outbound X (10\% matched loads)

3,522 empty rigids out of terminal per week $=3,522$ loaded rigids inbound X (1 0\% matched loads)

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

Total semi movements = 1,090 loads out +0 empty out +0 loads in +1,090 empty in
$=1,090$ trips out $+1,090$ trips in
= 2,181 trips per week
Total rigid movements $=5,291$ loads out $+3,522$ empty out $+3,522$ loads in + 5,291 empty in
$=8,813$ trips out $+8,813$ trips in
= 17,625 trips per week
7. It was then assumed that 95% of container truck movements would occur on weekdays and 5% would occur on weekends. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday
(2,181 semi-truck movements per week X 95\%) $\div 5=414$ semi-trailer movements per weekday
(17,625 rigid truck movements per week X 95\%) $\div 5=3,349$ rigid truck movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 23 below.

Table 23 : Average weekly inbound and outbound warehouse related road movements 2030 for IMEX and Interstate combined

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	Semi	1,090	207
		Rigid	5,291	1,005
Empty	Inbound	Semi	1,090	207
		Rigid	5,291	1,005
Loaded	Inbound	Semi	0	-
		Rigid	3,522	669
Empty	Outbound	Semi	0	-
		Rigid	3,522	669
Total Truck movements	Outbound	Semi	1,090	207
		Rigid	8,813	1,674
	Inbound	Semi	1,090	207
		Rigid	8,813	1,674

8. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is one $24^{\text {th }}$ of the daily value. This is used because whilst the daily hours of operation may be less than 24 , there is an expectation that there would be a desire to avoid peak hour congestion so the peak hour number \% would reduce. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday in each direction x 4.2\% = trucks on and off site per hour in AM peak in each direction

207 semi movements in each direction per weekday x 4.2\% = 9 semi-truck movements in AM peak hour in each direction

1,674 rigid movements in each direction per weekday x 4.2\% = 70 rigid truck movements in AM peak hour in each direction

Table 24 : Total combined average weekday truck movements for warehousing activity at 2030

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	Semi	207	9
		Rigid	1,674	70
	Inbound	Semi	207	9
		Rigid	1,674	70

Note: Some truck numbers have been rounded to the nearest whole number
A consolidated flow diagram for movements of full container loads out of the terminal, warehouse generated loads out of the terminal and associated empty running truck trips are illustrated in the following flow diagram.

Figure 7 : Total average weekday truck movements at 2030

Note that there may be some minor differences in truck numbers between the flow diagram and the tables due to consolidation of figures and rounding. A full size diagram is included at Appendix A.

4.5.5 Combined IMEX and Interstate Containers 2050

As stated previously, warehouse generated truck traffic movements were estimated using a similar methodology to the derivation of container truck movements, with some variation to the underlying assumptions. The most significant changes to the assumptions were:

- the makeup of the fleet;
- the proportion of movements occurring during the week; and
- the level of load matching.

The following steps were taken to derive the daily truck movements in and out of Moorebank IMT for cargo handled through the warehouses:

1. The Moorebank IMT will have enough on-site warehousing capacity to handle approximately 20% of all full TEUs. It is assumed that half of these will be held in inventory in onsite warehousing for a period of weeks with the rest being general cargo (FAK) which would be deconsolidated and distributed offsite within a few days or arrive onsite for consolidation and export.

696,000 full inbound TEUs x 10% FAK $=69,600$ TEU's FAK for distribution from site

696,000 full inbound TEUs x 10\% Inventory = 69,600 TEU's Inventory for distribution from site

322,000 full outbound TEU's x 10\% FAK = 32,200 TEU's FAK arriving at site for consolidation

322,000 full outbound TEU's x 10\% Inventory = 32,200 TEU's Inventory arriving at site for consolidation
2. It is assumed that the terminal would be operational 52 weeks per year.

69,600 FAK $+69,600$ Inventory TEUs $\div 52=2,677$ TEUs into warehouse and distributed off site each week

32,200 FAK $+\mathbf{3 2 , 2 0 0}$ Inventory TEUs $\div 52=1,238$ TEUs arrive onto site and into warehouse each week
3. It is assumed that each TEU, when deconsolidated will generate approximately 25 pallet loads for domestic distribution:

2,677 TEU's $\times 25$ equivalent pallet loads per TEU = 66,923 equivalent pallet loads into warehouse and distributed off site by road each week
$1,238 \times 25$ equivalent pallet loads per TEU $=30,962$ equivalent pallet loads into warehouse by road and railed offsite each week
4. The truck fleet profile for palletised cargo will be different to that for direct FCL and MT container movements to and from the Moorebank terminal. It is assumed that
trucks moving pallets out of Moorebank IMT warehousing will comprise of 34% semi-trailers and 66% rigid trucks whilst 100% of the palletised cargo arriving at the site will be carried by rigid trucks:

Deliveries from Moorebank warehouses.
66,923 pallets per week $\times 34 \%=22,754$ pallets out on semi-trailer trucks

66,923 pallets per week $\times 66 \%=44,169$ pallets out on rigid trucks

Deliveries to Moorebank warehouses:
30,950 pallets per week $\times 100 \%=30,962$ pallets in on rigid trucks
5. Semi-trailer trucks are likely to carry, on average 20 pallets per truck whilst rigid trucks have been assumed to carry, on average 8 pallets per load. Dividing the number of pallets by each average load determines the average number of loaded truck movements per week into and out of the warehouses.

Deliveries from Moorebank warehouses:
22,754 pallets in semis per week $\div 20$ pallets per truck $=1,138$ loaded semitrailer truck movements out per week

44,169 pallets in rigids per week $\div 8$ pallets per truck $=5,521$ loaded rigid truck movements out per week

Deliveries to Moorebank warehouses:
30,962 pallets in rigids per week $\div 8$ pallets per truck $=3,870$ loaded rigid truck movements in per week
6. It is assumed that there will be no truck load matching for palletised cargo movement to and from the Moorebank IMT warehouses. Therefore all movements would generate an empty running leg into or out of the terminal. By adding the total inbound and outbound movements the total truck movements can be estimated.

Empty running trips in = loaded trips out X (1 - \% load matching factor)
1,138 semis empty into terminal per week $=1,138$ loaded semis outbound X (10\% matched loads)

5,521 empty rigids into terminal per week = 5,521 loaded rigids outbound X (10\% matched loads)

3,870 empty rigids out of terminal per week $=3,870$ loaded rigids inbound X (10\% matched loads)

By adding the total inbound and outbound movements the total truck movements can be estimated. To generate total number of trips for each truck type:

Total trips per week = loaded trips out + empty trips out + loaded trips in + empty trips in

```
Total semi movements \(\quad=1,138\) loads out +0 empty out +0 loads in \(+1,138\)
    empty in
    = 1,138 trips out \(+1,138\) trips in
    = 2,275 trips per week
Total rigid movements \(=5,521\) loads out \(+3,870\) empty out \(+3,870\) loads in +
    5,521 empty in
    \(=9,391\) trips out \(+9,391\) trips in
    \(=18,783\) trips per week
```

7. It was then assumed that 95% of container truck movements would occur on weekdays and 5% would occur on weekends. The proportion on weekdays was then divided by 5 to reach an average number of truck moves per weekday
(2,275 semi-truck movements per week X 95\%) $\div 5=432$ semi-trailer movements per weekday
(18,783 rigid truck movements per week X 95\%) $\div 5=3,569$ rigid truck movements per weekday

Total inbound and outbound moves per week and per weekday can be summarised in Table 25 below.

Table 25 : Average weekly inbound and outbound warehouse related road movements 2050 for IMEX and Interstate combined

Truck Status	Direction on road	Truck Type	Trucks per week (a)	Average trucks per Weekday (b)
Loaded	Outbound	Semi	1,138	216
		Rigid	5,521	1,049
Empty	Inbound	Semi	1,138	216
		Rigid	5,521	1,049
Loaded	Inbound	Semi	0	-
		Rigid	3,870	735
Empty	Outbound	Semi	0	-
		Rigid	3,870	735
Total Truck movements	Outbound	Semi	1,138	216
		Rigid	9,391	1,784
	Inbound	Semi	1,138	216
		Rigid	9,391	1,784

8. Daily truck volumes were multiplied by 4.2% to generate indicative peak hourly truck volumes for each vehicle class both inbound and outbound. The 4.2% is one 24th of the daily value. This is used because whilst the daily hours of operation may be less Liability limited by a scheme approved under Professional Standards Legislation.
than 24 , there is an expectation that there would be a desire to avoid peak hour congestion so the peak hour number $\%$ would reduce. This approach was agreed with RMS and FTBS in March 2014.

Average trucks per weekday $\div 2$ (in each direction) $x 4.2 \%=$ trucks on and off site per hour in AM peak in each direction

432 semi movements $\div 2$ in each direction per weekday $\times 4.2 \%=9$ semi-truck movements in AM peak hour in each direction

3,569 rigid movements $\div 2$ in each direction per weekday $\times 4.2 \%=75$ rigid truck movements in AM peak hour in each direction

Table 26 : Total combined average weekday truck movements for warehousing activity at 2050

Truck Status	Direction on road	Truck Type	Average trucks per Weekday	Trucks per hour AM Peak
Total Truck movements	Outbound	Semi	216	9
		Inbound	Rigid	1,784

Note: Some truck numbers have been rounded to the nearest whole number
A consolidated flow diagram for movements of full container loads out of the terminal, warehouse generated loads out of the terminal and associated empty running truck trips are illustrated in the following flow diagram.

Figure 8 : Total average weekday truck movements at 2050

Note that there may be some minor differences between the flow diagram and the tables due to consolidation of figures and rounding. A full size diagram is included at Appendix A.

5 Additional Sensitivity Analysis

5.1 Key Assumptions that impact on Trip Generation

Each of the assumptions set out Section 4.1 can have a significant impact on the number of truck trips generated as a result of both direct movements of containers to and from the terminal and also for cargo movements to and from the warehouses.
We have selected three of these assumptions which are specifically related to the nature of the truck operation and freight distribution to illustrate the relative potential impact that factors beyond the control of the terminal operator could have on possible truck volumes.

5.1.1 Pallet Loads

The analysis assumes that 20 per cent of all cargo through the terminal will go via the onsite warehousing. Once the cargo in the import containers is deconsolidated it will either be delivered within a matter of days or stored as inventory and distributed as required.
Furthermore, we have assumed that the majority (66%) of these movements will be undertaken by rigid vehicles based on the notion that customers who wish to receive larger consignments of cargo on a regular basis may seek to have a full container delivered as a means of avoiding the additional handling costs of unpacking the cargo offsite.

There are a number of truck configurations within what is generally classified as a rigid vehicle. Load capacities range from approximately 6 tonne to as high as 14 tonne with floor space for between 8 and 14 pallets.
Given the light weight of most import containers (the average weight is between 12 and 13 tonne) we have considered the cubic capacity as more relevant and translated cargo volumes to the number of pallets and allocated pallets to truck capacity for the generation of vehicle volumes as set out in the earlier sections.

A conservative approach was taken with regard to the likely volumes carried by each rigid truck arriving or leaving the terminal and an average of 8 pallets per truck was assumed. The impact of achieving a higher pallet load per truck on rigid truck trips generated against the base scenario is illustrated in Table 27 and Table 28 below.

Table 27 : Sensitivity analysis for outbound AM peak hour truck movements for warehousing activity assuming different pallet loads for rigid trucks

Outbound	2030			2050		
	8 Pallet	12 Pallet	14 Pallet	8 Pallet	12 Pallet	14 Pallet
	0	0	0	0	0	0
Semi	9	9	9	9	9	9
Rigid	70	47	40	75	50	43
TOTAL	79	56	49	84	59	52

Table 28 : Sensitivity analysis for inbound AM peak hour truck movements for warehousing activity assuming different pallet loads for rigid trucks

Inbound	2030			2050		
	8 Pallet	12 Pallet	8 Pallet	12 Pallet	8 Pallet	12 Pallet
	0	0	0	0	0	0
Semi	9	9	9	9	9	9
Rigid	70	47	40	75	50	43
Total	79	56	49	84	59	52

5.1.2 Distribution during AM Peak period

The volume of traffic arriving and leaving the terminal during the AM peak period will be a function of the transport company and their deployment of resources, the proximity, location and operating hours of the cargo owner and the underlying level of congestion on the network during both the peak and inter peak periods.
For the purposes of our analysis we assumed that, over the next 20 years the level of congestion on the road network will rise, particularly at and close to the peak hours in the morning and evening. As a result we believe that cargo owners may wish to minimise the number of movements during the peak hour where possible as the additional costs of standing in traffic will be passed onto them by transport operators - time is as important a factor on transport costs as distance.

The trip generation analysis conducted in earlier sections has been undertaken using a distribution during the AM peak of 4.2% of total weekday volumes. The following tables illustrate the possible distribution at two other allocations -6% and 7% respectively.

Table 29 : Sensitivity analysis for AM peak hour truck movements for both direct and warehouse related traffic - Peak Hour distribution

	2030			2050		
In each direction	4.2% of daily volume	6% of daily volume	$\mathbf{7} \%$ of daily volume	4.2% of daily volume	6% of daily volume	7% of daily volume
Bdouble	13	18	21	13	19	22
Semi	73	104	121	77	110	128
Rigid	70	100	117	75	107	125
Total	156	223	260	165	236	276

5.2 Impact of Cumulative Scenarios

As part of the sensitivity analysis we have also assessed the potential impact on both warehousing requirements and truck trip generation should there be both the SIMTA and Moorebank Terminal developments in this location. The two possible scenarios considered were:

1. The IMEX terminal at Moorebank only handles 500,000 TEU at its peak; or
2. The terminal at Moorebank only handles interstate cargoes with the assumption that the SIMTA facility handles all the IMEX volumes.

These scenarios have an impact on both the likely amount of onsite warehousing required to cater to the cargo passing through the intermodal terminal and the likely truck trips generated as a result of the reduced volumes.

It is assumed that any surplus warehousing (i.e. the potential capacity for warehousing on site of $300,000 \mathrm{~m} 2$ less the required warehousing) will be utilised for general distribution activities by the market. Truck trips for the surplus warehousing are not included in the calculations within this technical note.

5.2.1 Scenario One - Reduced IMEX volume

A summary of the total volumes for this scenario is set below in Table 30.

Table 30 : Scenario 1 - Reduced IMEX (500k TEU only) plus Interstate

	2030				2050		
Terminal Throughput	IMEX	Interstate	Total	IMEX	Interstate	Total	
('000 TEU)							
Total Imports	261.663	164.000	425.663	261.663	203.000	464.663	
Total Exports	238.337	164.000	402.337	238.337	203.000	441.337	
Total Throughput	$\mathbf{5 0 0 . 0 0 0}$	$\mathbf{3 2 8 . 0 0 0}$	$\mathbf{8 2 8 . 0 0 0}$	$\mathbf{5 0 0 . 0 0 0}$	$\mathbf{4 0 6 . 0 0 0}$	$\mathbf{9 0 6 . 0 0 0}$	

Warehousing Requirements m2	For Freight All Kinds (FAK)	For Inventory (INV)	Total	For Freight All Kinds (FAK)	For Inventory (INV)	Total
Associated warehousing	37,948	149,420	187,368	41,718	164,264	205,982
Surplus warehousing			112,632			94,018

Note that volumes in the table exclude transhipments

Utilising the same methodology outlined in Section 4 for the generation of truck trips the following estimates for AM Peak period were derived. See Table 31.

Table 31 : Reduced IMEX Scenario - Total combined average weekday truck movements for combined activity at 2030 and 2050

Truck trips generated at AM Peak Weekdays		2030			2050		
		IMEX	Interstate	Total	IMEX	Interstate	Total
Direct Containers	Outbound						
	Bdouble	5	3	8	5	4	8
	Semi	23	16	39	23	20	43
	Rigid	0	0	0	0	0	0
	Total	27	20	47	27	24	52
	Inbound						
	Bdouble	5	3	8	5	4	8
	Semi	23	16	39	23	20	43
	Rigid	0	0	0	0	0	0
	Total	27	20	47	27	24	52

Warehousing Related	Outbound						
	Bdouble	0	0	0	0	0	0
	Semi	3	2	5	3	2	5
	Rigid	24	19	44	24	24	48
	Total	28	21	49	28	26	54
	Inbound						
	Bdouble	0	0	0	0	0	0
	Semi	3	2	5	3	2	5
	Rigid	24	19	44	24	24	48
	Total	28	21	49	28	26	54

Combined total	Outbound						
	Bdouble	5	3	8	5	4	8
	Semi	26	18	44	26	22	48
	Rigid	24	19	44	24	24	48
	Total	55	40	95	55	50	105
	Inbound						
	Bdouble	5	3	8	5	4	8
	Semi	26	18	44	26	22	48
	Rigid	24	19	44	24	24	48
	Total	55	40	95	55	50	105

5.2.2 Scenario Two - Interstate terminal only

A summary of the total volumes for this scenario is set below in Table 32.

Table 32 : Scenario 2 - Interstate Terminal cargo only

	2030					
Terminal						
Throughput	IMEX	Interstate	Total	IMEX	Interstate	Total
Liability limited by a scheme approved under Professional Standards Legislation.	66					
© 2014 Deloitte Touche Tohmatsu						

	('000 TEU)					
Total Imports	0	164.000	164.000	0	203.000	203.000
Total Exports	0	164.000	164.000	0	203.000	203.000
Total Throughput	$\mathbf{0}$	$\mathbf{3 2 8 . 0 0 0}$	$\mathbf{3 2 8 . 0 0 0}$	$\mathbf{0}$	$\mathbf{4 0 6 . 0 0 0}$	$\mathbf{4 0 6 . 0 0 0}$

Warehousing Requirements m2	For Freight All Kinds (FAK)	For Inventory (INV)	Total	For Freight All Kinds (FAK)	For Inventory (INV)	Total
Associated warehousing	15,600	61,425	77,025	19,370	76,269	95,639
Surplus warehousing			222,975			204,361

Note that volumes in the table exclude transhipments

Utilising the same methodology outlined in Section 4 for the generation of truck trips the following estimates for AM Peak period were derived. See Table 33.

Table 33 : Interstate Only Scenario - Total combined average weekday truck movements for combined activity at 2030 and 2050

Combined total	Outbound				
	Bdouble	3	3	4	4
	Semi	18	18	22	22
	Rigid	19	19	24	24
	Total	40	40	50	50
	Inbound				
	Bdouble	3	3	4	4
	Semi	18	18	22	22
	Rigid	19	19	24	24
	Total	40	40	50	50

6 Limitation of our work

General use restriction

This report is prepared solely for the use of Moorebank Intermodal Company. This report is not intended to and should not be used or relied upon by anyone else and we accept no duty of care to any other person or entity. The report has been prepared for the purpose set out in Section 1 of this document. You should not refer to or use our name or the advice for any other purpose.

Appendix A

Figure 9 : IMEX Flows through the terminal - 2030 to 2050

Figure 10 : Interstate flows through the terminal: 2030

Figure 11 : Interstate flows through the terminal: 2050

Figure 12 : IMEX and Interstate generated truck movements onto and off the terminal: 2030

Empty truck movements
To other clients or delivery to port directly
Internal movements

Liability limited by a scheme approved under Professional Standards Legislation.

Figure 13 : IMEX and Interstate generated truck movements onto and off the terminal: 2050

Empty truck movements
Internal movements
To other clients or delivery to port directly

Liability limited by a scheme approved under Professional Standards Legislation.

[^0]: +ris
 IMT boundary
 Project site boundary
 \square Northern rail access option
 -Central rail access option
 Southern rail access option

[^1]: ${ }^{1}$ The figure is calculated as the SMVU total VKT for 'Capital City' multiplied by the SMVU ratio of workrelated VKT to total VKT for NSW (where 'Work-related' is defined as 'All business use' plus 'To and from work', and the 'Personal and other' category is excluded)

[^2]: ${ }^{1}$ Based on the analysis of data provided by the Australian Customs and Border Protection Service (ACBPS)
 ${ }^{2}$ NSW Container Freight Improvement Strategy
 ${ }^{3}$ http://freight.transport.nsw.gov.au/strategy/task/volume.html
 Liability limited by a scheme approved under Professional Standards Legislation.

